
MATLAB® Compiler SDK™
Getting Started Guide

R2022a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Compiler SDK™ Getting Started Guide
© COPYRIGHT 2012–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2015 Online only New for Version 6.0 (Release R2015a)
September 2015 Online only Revised for Version 6.1 (Release 2015b)
October 2015 Online only Rereleased for Version 6.0.1 (Release 2015aSP1)
March 2016 Online only Revised for Version 6.2 (Release 2016a)
September 2016 Online only Revised for Version 6.3 (Release R2016b)
March 2017 Online only Revised for Version 6.3.1 (Release R2017a)
September 2017 Online only Revised for Version 6.4 (Release R2017b)
March 2018 Online only Revised for Version 6.5 (Release R2018a)
September 2018 Online only Revised for Version 6.6 (Release R2018b)
March 2019 Online only Revised for Version 6.6.1 (Release R2019a)
September 2019 Online only Revised for Version 6.7 (Release R2019b)
March 2020 Online only Revised for Version 6.8 (Release R2020a)
September 2020 Online only Revised for Version 6.9 (Release R2020b)
March 2021 Online only Revised for Version 6.10 (Release R2021a)
September 2021 Online only Revised for Version 6.11 (Release R2021b)
March 2022 Online only Revised for Version 7.0 (Release R2022a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Overview of MATLAB Compiler SDK
1

MATLAB Compiler SDK Product Description . 1-2

Appropriate Tasks for MATLAB Compiler Products 1-3

Deployment Product Terms . 1-5

Files Generated After Packaging MATLAB Functions 1-10
for_redistribution Folder . 1-10
for_redistribution_files_only Folder . 1-10
for_testing Folder . 1-12

Install and Configure MATLAB Runtime . 1-14
Download MATLAB Runtime Installer . 1-14
Install MATLAB Runtime Interactively . 1-14
Install MATLAB Runtime Noninteractively . 1-16
Install MATLAB Runtime without Administrator Rights 1-17
Install Multiple MATLAB Runtime Versions on Single Machine 1-17
Install MATLAB and MATLAB Runtime on Same Machine 1-18
Uninstall MATLAB Runtime . 1-18

Examples
2

Create a C Shared Library with MATLAB Code . 2-2
Create Functions in MATLAB . 2-2
Create a C Shared Library Using the Library Compiler App 2-3
Customize the Application and Its Appearance . 2-4
Package the Application . 2-5
Create C Shared Library Using compiler.build.cSharedLibrary 2-5
Implement C Shared Library in C Application . 2-6

Generate a C++ mwArray API Shared Library and Build a C++
Application . 2-7

Create Functions in MATLAB . 2-7
Create a C++ Shared Library Using the Library Compiler App 2-7
Create C++ Shared Library Using compiler.build.cppSharedLibrary 2-9
Implement C++ mwArray API Shared Library with Driver Application . . 2-10

Generate a C++ MATLAB Data API Shared Library and Build a C++
Application . 2-13

Create Functions in MATLAB . 2-13

iii

Contents

Create a C++ Shared Library Using Library Compiler App 2-13
Create C++ Shared Library Using compiler.build.cppSharedLibrary 2-15
Implement C++ MATLAB Data API Shared Library with Sample Application

. 2-16

Generate .NET Assembly and Build .NET Application 2-19
Prerequisites . 2-19
Files . 2-19
Create Function in MATLAB . 2-19
Create .NET Assembly Using Library Compiler App 2-19
Create .NET Assembly Using compiler.build.dotNETAssembly 2-23
Integrate .NET Assembly Into .NET Application 2-24

Create a Generic COM Component with MATLAB Code 2-27
Prerequisites . 2-27
Create Function in MATLAB . 2-27
Create Generic COM Component Using Library Compiler App 2-27
Customize the Application and Its Appearance . 2-28
Package the Application . 2-29
Create COM Component Using compiler.build.COMComponent 2-30
Integrate into COM Application . 2-31

Generate Java Package and Build Java Application 2-32
Prerequisites . 2-32
Create Function in MATLAB . 2-32
Create Java Package Using Library Compiler App 2-32
Create Java Package Using compiler.build.javaPackage 2-36
Compile and Run MATLAB Generated Java Application 2-37

Generate a Python Package and Build a Python Application 2-39
Prerequisites . 2-39
Create Function in MATLAB . 2-39
Create Python Application Using Library Compiler App 2-39
Create Python Package Using compiler.build.pythonPackage 2-43
Install and Run MATLAB Generated Python Application 2-44

Customizing a Compiler Project
3

Customize an Application . 3-2
Customize the Installer . 3-2
Manage Required Files in Compiler Project . 3-4
Sample Driver File Creation . 3-5
Specify Files to Install with Application . 3-6
Additional Runtime Settings . 3-6
API Selection for C++ Shared Library . 3-7

Manage Support Packages . 3-9
Using a Compiler App . 3-9
Using the Command Line . 3-9

iv Contents

Using MATLAB Production Server
4

Create Deployable Archive for MATLAB Production Server 4-2
Create MATLAB Function . 4-2
Create Deployable Archive with Production Server Compiler App 4-2
Customize Application and Its Appearance . 4-3
Package Application . 4-4
Create Deployable Archive Using compiler.build.productionServerArchive

. 4-5
Compatibility Considerations . 4-5

Create and Install a Deployable Archive with Excel Integration for
MATLAB Production Server . 4-6

Prerequisites . 4-6
Create Function in MATLAB . 4-6
Create Deployable Archive with Excel Integration Using Production Server

Compiler App . 4-6
Customize the Application and Its Appearance . 4-7
Package the Application . 4-8
Create Deployable Archive with Excel Integration Using

compiler.build.excelClientForProductionServer 4-9
Install the Deployable Archive with Excel Integration 4-10

Create a C# Client . 4-11

Create MATLAB Production Server Java Client Using MWHttpClient Class
. 4-14

Create a C++ Client . 4-17

Create a Python Client . 4-22

v

Overview of MATLAB Compiler SDK

• “MATLAB Compiler SDK Product Description” on page 1-2
• “Appropriate Tasks for MATLAB Compiler Products” on page 1-3
• “Deployment Product Terms” on page 1-5
• “Files Generated After Packaging MATLAB Functions” on page 1-10
• “Install and Configure MATLAB Runtime” on page 1-14

1

MATLAB Compiler SDK Product Description
Build software components from MATLAB programs

MATLAB Compiler SDK extends the functionality of MATLAB Compiler™ to let you build C/C++
shared libraries, Microsoft® .NET assemblies, Java® classes, Python® packages, and Docker®

container-based microservices from MATLAB programs. These components can be integrated with
custom applications and then deployed to desktop, web, and enterprise systems.

MATLAB Compiler SDK includes a development version of MATLAB Production Server™ for testing
and debugging application code and Excel® add-ins before deploying them to web applications and
enterprise systems.

Applications created using software components from MATLAB Compiler SDK can be shared royalty-
free with users who do not need MATLAB. These applications use the MATLAB Runtime, a set of
shared libraries that enables the execution of compiled MATLAB applications or components.

1 Overview of MATLAB Compiler SDK

1-2

Appropriate Tasks for MATLAB Compiler Products
MATLAB Compiler generates standalone applications and Excel add-ins. MATLAB Compiler SDK
generates C/C++ shared libraries, deployable archives for use with MATLAB Production Server, Java
packages, .NET assemblies, and COM components.

While MATLAB Compiler and MATLAB Compiler SDK let you run your MATLAB application outside
the MATLAB environment, it is not appropriate for all external tasks you may want to perform. Some
tasks require other products or MATLAB external interfaces. Use the following table to determine if
MATLAB Compiler or MATLAB Compiler SDK is appropriate to your needs.

Task MATLAB
Compiler and
MATLAB
Compiler SDK

MATLAB
Coder™

Simulink® HDL Coder™ MATLAB
External
Interfaces

Package
MATLAB
applications for
deployment to
users who do
not have
MATLAB

■

Package
MATLAB
applications for
deployment to
MATLAB
Production
Server

■

Build non-
MATLAB
applications
that include
MATLAB
functions

■

Generate
readable and
portable C/C++
code from
MATLAB code

 ■

Generate MEX
functions from
MATLAB code
for code
verification and
acceleration.

 ■

Integrate
MATLAB code
into Simulink

 ■

 Appropriate Tasks for MATLAB Compiler Products

1-3

Task MATLAB
Compiler and
MATLAB
Compiler SDK

MATLAB
Coder™

Simulink® HDL Coder™ MATLAB
External
Interfaces

Generate
hardware
description
language (HDL)
from MATLAB
code

 ■

Integrate
custom C code
into MATLAB
with MEX files

 ■

Call MATLAB
from C and
Fortran
programs

 ■

Task MATLAB
Compiler and
MATLAB
Compiler SDK

MATLAB Coder Simulink HDL Coder MATLAB
External
Interfaces

Note Components generated by MATLAB Compiler and MATLAB Compiler SDK cannot be used in
the MATLAB environment.

1 Overview of MATLAB Compiler SDK

1-4

Deployment Product Terms
A

Add-in — A Microsoft Excel add-in is an executable piece of code that can be actively integrated into
a Microsoft Excel application. Add-ins are front-ends for COM components, usually written in some
form of Microsoft Visual Basic®.

Application program interface (API) — A set of classes, methods, and interfaces that is used to
develop software applications. Typically an API is used to provide access to specific functionality. See
MWArray.

Application — An end user-system into which a deployed functions or solution is ultimately
integrated. Typically, the end goal for the deployment customer is integration of a deployed MATLAB
function into a larger enterprise environment application. The deployment products prepare the
MATLAB function for integration by wrapping MATLAB code with enterprise-compatible source code,
such as C, C++, C# (.NET), F#, and Java code.

Assembly — An executable bundle of code, especially in .NET.

B

Binary — See Executable.

Boxed Types — Data types used to wrap opaque C structures.

Build — See Compile.

C

Class — A user-defined type used in C++, C#, and Java, among other object-oriented languages, that
is a prototype for an object in an object-oriented language. It is analogous to a derived type in a
procedural language. A class is a set of objects which share a common structure and behavior.
Classes relate in a class hierarchy. One class is a specialization (a subclass) of another (one of its
superclasses) or comprises other classes. Some classes use other classes in a client-server
relationship. Abstract classes have no members, and concrete classes have one or more members.
Differs from a MATLAB class

Compile — In MATLAB Compiler and MATLAB Compiler SDK, to compile MATLAB code involves
generating a binary that wraps around MATLAB code, enabling it to execute in various computing
environments. For example, when MATLAB code is compiled into a Java package, a Java wrapper
provides Java code that enables the MATLAB code to execute in a Java environment.

COM component — In MATLAB Compiler, the executable back-end code behind a Microsoft Excel
add-in. In MATLAB Compiler SDK, an executable component, to be integrated with Microsoft COM
applications.

Console application — Any application that is executed from a system command prompt window.

D

Data Marshaling — Data conversion, usually from one type to another. Unless a MATLAB deployment
customer is using type-safe interfaces, data marshaling—as from mathematical data types to
MathWorks® data types such as represented by the MWArray API—must be performed manually, often
at great cost.

 Deployment Product Terms

1-5

Deploy — The act of integrating MATLAB code into a larger-scale computing environment, usually to
an enterprise application, and often to end users.

Deployable archive — The deployable archive is embedded by default in each binary generated by
MATLAB Compiler or MATLAB Compiler SDK. It houses the deployable package. All MATLAB-based
content in the deployable archive uses the Advanced Encryption Standard (AES) cryptosystem. See
“Additional Details”.

DLL — Dynamic link library. Microsoft's implementation of the shared library concept for Windows®.
Using DLLs is much preferred over the previous technology of static (or non-dynamic) libraries,
which had to be manually linked and updated.

E

Empties — Arrays of zero (0) dimensions.

Executable — An executable bundle of code, made up of binary bits (zeros and ones) and sometimes
called a binary.

F

Fields — For this definition in the context of MATLAB Data Structures, see Structs.

Fields and Properties — In the context of .NET, Fields are specialized classes used to hold data.
Properties allow users to access class variables as if they were accessing member fields directly,
while actually implementing that access through a class method.

I

Integration — Combining deployed MATLAB code's functionality with functionality that currently
exists in an enterprise application. For example, a customer creates a mathematical model to forecast
trends in certain commodities markets. In order to use this model in a larger-scale financial
application (one written with the Microsoft .NET Framework, for instance) the deployed financial
model must be integrated with existing C# applications, run in the .NET enterprise environment.

Instance — For the definition of this term in context of MATLAB Production Server software, see
MATLAB Production Server Server Instance.

J

JAR — Java archive. In computing software, a JAR file (or Java Archive) aggregates many files into
one. Software developers use JARs to distribute Java applications or libraries, in the form of classes
and associated metadata and resources (text, images, etc.). Computer users can create or extract JAR
files using the jar command that comes with a Java Development Kit (JDK).

Java-MATLAB Interface — Known as the JMI Interface, this is the Java interface built into MATLAB
software.

JDK — The Java Development Kit is a product which provides the environment required for
programming in Java.

JMI Interface — see Java-MATLAB Interface.

JRE — Java Run-Time Environment is the part of the Java Development Kit (JDK) required to run Java
programs. It comprises the Java Virtual Machine, the Java platform core classes, and supporting files.

1 Overview of MATLAB Compiler SDK

1-6

It does not include the compiler, debugger, or other tools present in the JDK™. The JRE™ is the
smallest set of executables and files that constitute the standard Java platform.

M

Magic Square — A square array of integers arranged so that their sum is the same when added
vertically, horizontally, or diagonally.

MATLAB Runtime — An execution engine made up of the same shared libraries. MATLAB uses these
libraries to enable the execution of MATLAB files on systems without an installed version of MATLAB.

MATLAB Runtime singleton — See Shared MATLAB Runtime instance.

MATLAB Runtime workers — A MATLAB Runtime session. Using MATLAB Production Server
software, you have the option of specifying more than one MATLAB Runtime session, using the --
num-workers options in the server configurations file.

MATLAB Production Server Client — In the MATLAB Production Server software, clients are
applications written in a language supported by MATLAB Production Server that call deployed
functions hosted on a server.

MATLAB Production Server Configuration — An instance of the MATLAB Production Server
containing at least one server and one client. Each configuration of the software usually contains a
unique set of values in the server configuration file, main_config (MATLAB Production Server).

MATLAB Production Server Server Instance — A logical server configuration created using the mps-
new command in MATLAB Production Server software.

MATLAB Production Server Software — Product for server/client deployment of MATLAB programs
within your production systems, enabling you to incorporate numerical analytics in enterprise
applications. When you use this software, web, database, and enterprise applications connect to
MATLAB programs running on MATLAB Production Server via a lightweight client library, isolating
the MATLAB programs from your production system. MATLAB Production Server software consists of
one or more servers and clients.

Marshaling — See Data Marshaling.

mbuild — MATLAB Compiler SDK command that compiles and links C and C++ source files into
standalone applications or shared libraries. For more information, see the mbuild function reference
page.

mcc — The MATLAB command that invokes the compiler. It is the command-line equivalent of using
the compiler apps.

Method Attribute — In the context of .NET, a mechanism used to specify declarative information to
a .NET class. For example, in the context of client programming with MATLAB Production Server
software, you specify method attributes to define MATLAB structures for input and output processing.

mxArray interface — The MATLAB data type containing all MATLAB representations of standard
mathematical data types.

MWArray interface — A proxy to mxArray. An application program interface (API) for exchanging
data between your application and MATLAB. Using MWArray, you marshal data from traditional
mathematical types to a form that can be processed and understood by MATLAB data type mxArray.

 Deployment Product Terms

1-7

There are different implementations of the MWArray proxy for each application programming
language.

P

Package — The act of bundling the deployed MATLAB code, along with the MATLAB Runtime and
other files, into an installer that can be distributed to others. The compiler apps place the installer in
the for_redistribution subfolder. In addition to the installer, the compiler apps generate a
number of lose artifacts that can be used for testing or building a custom installer.

PID File — See Process Identification File (PID File).

Pool — A pool of threads, in the context of server management using MATLAB Production Server
software. Servers created with the software do not allocate a unique thread to each client connection.
Rather, when data is available on a connection, the required processing is scheduled on a pool, or
group, of available threads. The server configuration file option --num-threads sets the size of that
pool (the number of available request-processing threads) in the master server process.

Process Identification File (PID File) — A file that documents informational and error messages
relating to a running server instance of MATLAB Production Server software.

Program — A bundle of code that is executed to achieve a purpose. Programs usually are written to
automate repetitive operations through computer processing. Enterprise system applications usually
consist of hundreds or even thousands of smaller programs.

Properties — For this definition in the context of .NET, see Fields and Properties.

Proxy — A software design pattern typically using a class, which functions as an interface to
something else. For example, MWArray is a proxy for programmers who need to access the
underlying type mxArray.

S

Server Instance — See MATLAB Production Server Server Instance.

Shared Library — Groups of files that reside in one space on disk or memory for fast loading into
Windows applications. Dynamic-link libraries (DLLs) are Microsoft's implementation of the shared
library concept for Microsoft Windows.

Shared MATLAB Runtime instance — When using MATLAB Compiler SDK, you can create a shared
MATLAB Runtime instance, also known as a singleton. When you invoke MATLAB Compiler with the -
S option through the compiler (using either mcc or a compiler app), a single MATLAB Runtime
instance is created for each COM component or Java package in an application. You reuse this
instance by sharing it among all subsequent class instances. Such sharing results in more efficient
memory usage and eliminates the MATLAB Runtime startup cost in each subsequent class
instantiation. All class instances share a single MATLAB workspace and share global variables in the
deployed MATLAB files. MATLAB Compiler SDK creates singletons by default for .NET assemblies.
MATLAB Compiler creates singletons by default for the COM components used by the Excel add-ins.

State — The present condition of MATLAB, or the MATLAB Runtime. MATLAB functions often carry
state in the form of variable values. The MATLAB workspace itself also maintains information about
global variables and path settings. When deploying functions that carry state, you must often take
additional steps to ensure state retention when deploying applications that use such functions.

1 Overview of MATLAB Compiler SDK

1-8

Structs — MATLAB Structures. Structs are MATLAB arrays with elements that you access using
textual field designators. Fields are data containers that store data of a specific MATLAB type.

System Compiler — A key part of Interactive Development Environments (IDEs) such as Microsoft
Visual Studio®.

T

Thread — A portion of a program that can run independently of and concurrently with other portions
of the program. See pool for additional information on managing the number of processing threads
available to a server instance.

Type-safe interface — An API that minimizes explicit type conversions by hiding the MWArray type
from the calling application.

W

Web Application Archive (WAR) —In computing, a Web Application Archive is a JAR file used to
distribute a collection of JavaServer pages, servlets, Java classes, XML files, tag libraries, and static
web pages that together constitute a web application.

Webfigure — A MathWorks representation of a MATLAB figure, rendered on the web. Using the
WebFigures feature, you display MATLAB figures on a website for graphical manipulation by end
users. This enables them to use their graphical applications from anywhere on the web, without the
need to download MATLAB or other tools that can consume costly resources.

Windows Communication Foundation (WCF) — The Windows Communication Foundation™ is an
application programming interface in the .NET Framework for building connected, service-oriented,
web-centric applications. WCF is designed in accordance with service oriented architecture
principles to support distributed computing where services are consumed by client applications.

 Deployment Product Terms

1-9

Files Generated After Packaging MATLAB Functions
When the packaging process is complete, three folders are generated in the target folder location:
for_redistribution, for_redistribution_files_only, and for_testing.

The file PackagingLog.html generated in the target folder location contains information on the mcc
command used and output from the packaging process.

for_redistribution Folder
Distribute the for_redistribution folder to users who do not have MATLAB installed on their
machines.

The folder contains the file MyAppInstaller_web.exe that installs the application and the MATLAB
Runtime (if it is included in the application at the time of packaging). It installs all the files that
enable use of the packaged application on the target platform with the target language in the target
folder.

for_redistribution_files_only Folder
Distribute the for_redistribution_files_only folder to users who do not have MATLAB
installed on their machines. This folder contains specific files that enable use of the packaged
application on the target platform with the target language.

C Shared Library

File Description
GettingStarted.html HTML file containing packaging information.
filename.lib Import library for user-written shared library.
filename.h Header file for user-written shared library.
filename.dll Code for user-written shared library.

1 Overview of MATLAB Compiler SDK

1-10

C++ Shared Library

File Description
GettingStarted.html HTML file containing packaging information.
filename.lib Import library for user-written mwArray API

shared library.
filename.h Header file for user-written mwArray API shared

library.
filename.dll Code for user-written mwArray API shared

library.
v2:

• generic_interface:

• filename.ctf
• readme.txt

The folder v2 contains another folder
generic_interface. It contains a ctf file,
which is the deployable archive for MATLAB Data
API library.

It also contains a readme.txt file that has
packaging information.

COM Component

File Description
_install.bat File that registers the generated dll file.
filename_1_0.dll The generated dll that needs to be registered

using mwregsvr.exe or regsvr32.exe.
GettingStarted.html HTML file containing packaging information.

.NET Assembly

File Description
filename.dll File that contains the generated component that

can be accessed using mwArray API.
filename_overview.html HTML overview documentation file for the

generated component. It contains requirements
for accessing the component and for generating
arguments using the mwArray class hierarchy.

filenameNative.dll File that contains the generated component that
can be accessed using native API.

GettingStarted.html HTML file containing packaging information.

 Files Generated After Packaging MATLAB Functions

1-11

Java Application

File Description
doc:

• html:

• filename

• Class1.html
• Class1Remote.html
• FilenameMCRFactory.html
• packageframe.html
• package-summary.html
• packagetree.html

• allclasses-frame.html
• allclasses-noframe.html
• constantvalues.html
• deprecated-list.html
• help-doc.html
• index.html
• index-all.html
• overview-tree.html
• package-list
• script.js
• stylesheet.css

The folder doc contains another folder html
which contains HTML documentation for all
classes in the packaged Java application.

Filename.jar Java archive for user-written application.
GettingStarted.html HTML file containing packaging information.

Python Application

File Description
filename:

• _init_.py
• filename.ctf

The folder Filename contains the following files:

• File used during initialization of the Python
package.

• Deployable archive for the Python package.
setup.py File that installs the Python packaged application.
GettingStarted.html HTML file containing packaging information.

for_testing Folder
Use the files in this folder to test your application. The folder contains all the intermediate and final
artifacts such as binaries, JAR files, header files, and source files for a specific target. The final
artifacts created during the packaging process are the same files as described in

1 Overview of MATLAB Compiler SDK

1-12

“for_redistribution_files_only Folder”. You use these files to test your application. For further
information on how to test your packaged applications, see the following topics:

Target Link
C “Implement a C Shared Library with a Driver

Application”
C++ mwArray API “Implement C++ mwArray API Shared Library

with Driver Application” on page 2-10
C++ MATLAB Data API “Implement C++ MATLAB Data API Shared

Library with Sample Application” on page 2-16
.NET “Integrate a .NET Assembly Into a C#

Application”

“Integrate a .NET Assembly Into a Visual Basic
Application”

COM “Integrate Magic Square into a COM Application”
Java “Integrate Simple MATLAB Function Into Java

Application”
Python “Integrate a Python Package”

The intermediate artifacts generated are a result of packaging of the MATLAB files. They are not
significant to the user.

This folder also contains two text files. mccExcludedFiles.txt lists the files excluded from
packaged application, and requiredMCRProducts.txt, contains product IDs of products required
by MATLAB Runtime to run the application.

See Also
mcc | deploytool

More About
• “Create a C Shared Library with MATLAB Code” on page 2-2
• “Generate a C++ mwArray API Shared Library and Build a C++ Application” on page 2-7
• “Generate a C++ MATLAB Data API Shared Library and Build a C++ Application” on page 2-

13
• “Generate .NET Assembly and Build .NET Application” on page 2-19
• “Create a Generic COM Component with MATLAB Code” on page 2-27
• “Generate Java Package and Build Java Application” on page 2-32
• “Generate a Python Package and Build a Python Application” on page 2-39

 Files Generated After Packaging MATLAB Functions

1-13

Install and Configure MATLAB Runtime
Supported Platforms: Windows, Linux®, macOS

MATLAB Runtime contains the libraries needed to run MATLAB applications on a target system
without a licensed copy of MATLAB.

Download MATLAB Runtime Installer
Download MATLAB Runtime using one of the following options:

• Download the MATLAB Runtime installer at the latest update level for the selected release from
the website at https://www.mathworks.com/products/compiler/matlab-runtime.html. This option is
best for end users who want to run deployed applications.

• Use the MATLAB function compiler.runtime.download to download the MATLAB Runtime
installer matching the version and update level of MATLAB from where the command is executed.
If the installer has already been downloaded to the machine, it returns the path to the MATLAB
Runtime installer. If the machine is offline, it returns a URL to the MATLAB Runtime installer. This
option is best for developers who want to create application installers that contain MATLAB
Runtime.

Install MATLAB Runtime Interactively
To install MATLAB Runtime:

1 Extract the archive containing the MATLAB Runtime installer.

Platform Steps
Windows Unzip the MATLAB Runtime installer.

Right-click the ZIP file MATLAB_Runtime_R2022a_win64.zip and
select Extract All.

Linux Unzip the MATLAB Runtime installer at the terminal using the unzip
command.

For example, if you are unzipping the R2022a MATLAB Runtime
installer, at the terminal, type:

unzip MATLAB_Runtime_R2022a_glnxa64.zip

macOS Unzip the MATLAB Runtime installer at the terminal using the unzip
command.

For example, if you are unzipping the R2022a MATLAB Runtime
installer, at the terminal, type:

unzip MATLAB_Runtime_R2022a_maci64.zip

Note The release part of the installer file name (_R2022a_) changes from one release to the
next.

2 Start the MATLAB Runtime installer.

1 Overview of MATLAB Compiler SDK

1-14

https://www.mathworks.com/products/compiler/matlab-runtime.html

Platform Steps
Windows Double-click the file setup.exe from the extracted files to start the

installer.
Linux At the terminal, type:

sudo -H ./install

Note You may need to allow the root user to access the running X
server:

xhost +SI:localuser:root
sudo -H ./install
xhost -SI:localuser:root

macOS At the terminal, type:

./install

Note You may need to enter an administrator user name and
password after you run ./install.

Note If you are running the MATLAB Runtime installer on a shared folder, be aware that other
users of the share may need to alter their system configuration.

3 When the MATLAB Runtime installer starts, it displays a dialog box. Read the information and
then click Next to proceed with the installation.

4 In the Folder Selection dialog box, specify the folder in which you want to install MATLAB
Runtime.

Note You can have multiple versions of MATLAB Runtime on your computer, but only one
installation for any particular version. If you already have an existing installation, the MATLAB
Runtime installer does not display the Folder Selection dialog box because it overwrites the
existing installation in the same folder.

5 Confirm your choices and click Next.

The MATLAB Runtime installer starts copying files into the installation folder.
6 On Linux and macOS platforms, after copying files to your disk, the MATLAB Runtime installer

displays the Product Configuration Notes dialog box. This dialog box contains information
necessary for setting your path environment variables. Copy the path information from this
dialog box, save it to a text file, and then click Next. For information on setting environment
variables, see “Set MATLAB Runtime Path for Deployment”.

7 Click Finish to exit the installer.

The default MATLAB Runtime installation directory for R2022a is specified in the following table:

Operating System MATLAB Runtime Installation Directory
Windows C:\Program Files\MATLAB\MATLAB Runtime

\v912
Linux /usr/local/MATLAB/MATLAB_Runtime/v912

 Install and Configure MATLAB Runtime

1-15

Operating System MATLAB Runtime Installation Directory
macOS /Applications/MATLAB/MATLAB_Runtime/

v912

Install MATLAB Runtime Noninteractively
To install MATLAB Runtime without having to interact with the installer dialog boxes, use one of
these noninteractive modes:

• Silent — The installer runs as a background task and does not display any dialog boxes.
• Automated — The installer displays the dialog boxes but does not wait for user interaction.

When run in silent or automated mode, the MATLAB Runtime installer uses default values for
installation options. You can override these values by using MATLAB Runtime installer command-line
options or an installer control file.

Note When running in silent or automated mode, the installer overwrites the installation location.

Run Installer in Silent Mode

To install MATLAB Runtime in silent mode:

1 Extract the contents of the MATLAB Runtime installer archive to a temporary folder.
2 In your system command prompt, navigate to the folder where you extracted the installer.
3 Run the MATLAB Runtime installer, specifying the -mode silent and -agreeToLicense yes

options on the command line.

Note On most platforms, the installer is located at the root of the folder into which the archive
was extracted. On 64-bit Windows, the installer is located in the archive bin folder.

Platform Command
Windows setup -mode silent -agreeToLicense

yes
Linux ./install -mode silent -

agreeToLicense yes
macOS ./install -mode silent -

agreeToLicense yes

Note If you do not include the -agreeToLicense yes option, the installer does not install
MATLAB Runtime.

4 View a log of the installation.

On Windows systems, the MATLAB Runtime installer creates a log file named
mathworks_username.log, where username is your Windows login name, in the location
defined by your TEMP environment variable.

5 On Linux and macOS systems, the MATLAB Runtime installer displays the log information at the
command prompt and also saves it to a file if you use the -outputFile option.

1 Overview of MATLAB Compiler SDK

1-16

Customize a Noninteractive Installation

When run in one of the noninteractive modes, the installer uses the default values unless you specify
otherwise. Like the MATLAB installer, the MATLAB Runtime installer accepts a number of command-
line options that modify the default installation properties.

Option Description
-destinationFolder Specifies where MATLAB Runtime is installed.
-outputFile Specifies where the installation log file is written.
-tmpdir Specifies where temporary files are stored during

installation.

Caution The installer deletes everything inside
the specified folder.

-automatedModeTimeout Specifies how long, in milliseconds, that each
dialog box is displayed when run in automatic
mode.

-inputFile Specifies an installer control file that contains
your command-line options and values. Omit the
dashes and put each option and value pair on a
separate line.

Note The MATLAB installer archive includes an example installer control file called
installer_input.txt. This file contains all of the options available for a full MATLAB installation.
The options listed in this section are valid for the MATLAB Runtime installer.

Install MATLAB Runtime without Administrator Rights
To install MATLAB Runtime as a user without administrator rights on Windows:

1 Use the MATLAB Runtime installer to install it on a Windows machine where you have
administrator rights.

2 Copy the folder where MATLAB Runtime was installed to the machine without administrator
rights. You can compress the folder into a zip file for distribution.

3 On the machine without administrator rights, add the <MATLAB_RUNTIME_INSTALL_DIR>
\runtime\arch directory to the user’s PATH environment variable. For more information, see
“Set MATLAB Runtime Path for Deployment”.

Install Multiple MATLAB Runtime Versions on Single Machine
MCRInstaller supports the installation of multiple versions of MATLAB Runtime on a target
machine. This capability allows applications compiled with different versions of MATLAB Runtime to
execute side by side on the same machine.

If you do not want multiple MATLAB Runtime versions on the target machine, you can remove the
unwanted ones. On Windows, run Add or Remove Programs from the Control Panel to remove a
specific version. On Linux, manually delete the unwanted MATLAB Runtime directories. You can
remove unwanted versions before or after installation of a more recent version of MATLAB Runtime
because versions can be installed or removed in any order.

 Install and Configure MATLAB Runtime

1-17

Note Installing multiple versions of MATLAB Runtime on the same machine is not supported on
macOS.

Install MATLAB and MATLAB Runtime on Same Machine
To test your deployed component on your development machine, you do not need an installation of
MATLAB Runtime. The MATLAB installation that you use to compile the component can act as a
MATLAB Runtime replacement.

You can, however, install MATLAB Runtime for debugging purposes.

Modify Path

If you install MATLAB Runtime on a machine that already has MATLAB on it, you must adjust the
system library path according to your needs.

To run deployed MATLAB code against MATLAB Runtime rather than MATLAB, ensure that your
library path lists the MATLAB Runtime directories before any MATLAB directories.

For information on setting environment variables, see “Set MATLAB Runtime Path for Deployment”.

Uninstall MATLAB Runtime
The method you use to uninstall MATLAB Runtime from your computer varies depending on your
platform.

Windows

1 Start the uninstaller.

From the Windows Start menu, search for the Add or Remove Programs control panel, and
double-click MATLAB Runtime in the list.

You can also start the MATLAB Runtime uninstaller from the
<MATLAB_RUNTIME_INSTALL_DIR>\uninstall\bin\<arch> folder, where
<MATLAB_RUNTIME_INSTALL_DIR> is your MATLAB Runtime installation folder and <arch> is
an architecture-specific folder, such as win32 or win64.

2 Select MATLAB Runtime from the list of products in the Uninstall Products dialog box and click
Next.

3 Click Finish.

Linux

1 Close all instances of MATLAB and MATLAB Runtime.
2 Enter this command at the Linux terminal:

rm -rf <MATLAB_RUNTIME_INSTALL_DIR>

Caution Be careful when using the rm command, as deleted files cannot be recovered.

1 Overview of MATLAB Compiler SDK

1-18

macOS

1 Close all instances of MATLAB and MATLAB Runtime.
2 Navigate to your MATLAB Runtime installation folder. For example, the installation folder might

be named MATLAB_Compiler_Runtime.app in your Applications folder.
3 Drag your MATLAB Runtime installation folder to the trash, and then select Empty Trash from

the Finder menu.

See Also
compiler.runtime.download

More About
• About MATLAB Runtime
• “MATLAB Runtime Startup Options”
• “Set MATLAB Runtime Path for Deployment”

 Install and Configure MATLAB Runtime

1-19

Examples

• “Create a C Shared Library with MATLAB Code” on page 2-2
• “Generate a C++ mwArray API Shared Library and Build a C++ Application” on page 2-7
• “Generate a C++ MATLAB Data API Shared Library and Build a C++ Application” on page 2-13
• “Generate .NET Assembly and Build .NET Application” on page 2-19
• “Create a Generic COM Component with MATLAB Code” on page 2-27
• “Generate Java Package and Build Java Application” on page 2-32
• “Generate a Python Package and Build a Python Application” on page 2-39

2

Create a C Shared Library with MATLAB Code
Supported platform: Windows, Linux, Mac

This example shows how to create a C shared library using a MATLAB function. The target system
does not require a licensed copy of MATLAB.

Create Functions in MATLAB
1 In MATLAB, examine the MATLAB code that you want packaged.

For this example, Copy the matrix folder that ships with MATLAB to your work folder.

copyfile(fullfile(matlabroot,'extern','examples','compilersdk','c_cpp','matrix'),'matrix')

Navigate to the new matrix subfolder in your work folder.
2 Examine and test the functions addmatrix.m, multiplymatrix.m, and eigmatrix.m.

addmatrix.m

function a = addmatrix(a1, a2)

a = a1 + a2;

At the MATLAB command prompt, enter addmatrix([1 4 7; 2 5 8; 3 6 9], [1 4 7; 2
5 8; 3 6 9]).

The output is:

 ans =
 2 8 14
 4 10 16
 6 12 18

multiplymatrix.m

function m = multiplymatrix(a1, a2)

m = a1*a2;

At the MATLAB command prompt, enter multiplymatrix([1 4 7; 2 5 8; 3 6 9], [1 4
7; 2 5 8; 3 6 9]).

The output is:

 ans =
 30 66 102
 36 81 126
 42 96 150

eigmatrix.m

function e = eigmatrix(a1)

 try
 %Tries to calculate the eigenvalues and return them.
 e = eig(a1);

2 Examples

2-2

 catch
 %Returns a -1 on error.
 e = -1;
end

At the MATLAB command prompt, enter eigmatrix([1 4 7; 2 5 8; 3 6 9]).

The output is:

 ans =
 16.1168
 -1.1168
 -0.0000

Create a C Shared Library Using the Library Compiler App
1 On the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In Application

Deployment, click Library Compiler. In the MATLAB Compiler project window, click C
Shared Library.

Alternately, you can open the Library Compiler app by entering libraryCompiler at the
MATLAB prompt.

2 In the Library Compiler app project window, specify the files of the MATLAB application that
you want to deploy.

a
In the Exported Functions section of the toolstrip, click .

b In the Add Files window, browse to the example folder, and select the function you want to
package. Click Open.

The function is added to the list of exported function files. Repeat this step to package multiple
files in the same application.

Add all three functions to the list of main files.
3 In the Packaging Options section of the toolstrip, decide whether to include the MATLAB

Runtime installer in the generated application by selecting one of the options:

• Runtime downloaded from web — Generate an installer that downloads the MATLAB
Runtime and installs it along with the deployed MATLAB application. You can specify the file
name of the installer.

• Runtime included in package — Generate an application that includes the MATLAB
Runtime installer. You can specify the file name of the installer.

 Create a C Shared Library with MATLAB Code

2-3

Note The first time you select this option, you are prompted to download the MATLAB
Runtime installer.

4 In the Library Name field, rename the packaged shared library as libmatrix. The same name
is followed through in the implementation of the shared library.

Customize the Application and Its Appearance
In the Library Compiler app, you can customize the installer, customize your application, and add
more information about the application.

• Library information — Information about the deployed application. You can also customize the
appearance of the application by changing the application icon and splash screen. The generated
installer uses this information to populate the installed application metadata. See “Customize the
Installer” on page 3-2.

• Additional installer options — Default installation path for the generated installer and custom
logo selection. See “Change the Installation Path” on page 3-3.

• Files required for your library to run — Additional files required by the generated application
to run. These files are included in the generated application installer. See “Manage Required Files
in Compiler Project” on page 3-4.

• Files installed for your end user — Files that are installed with your application.

See “Specify Files to Install with Application” on page 3-6.

2 Examples

2-4

Package the Application
When you are finished selecting your packaging options, save your Library Compiler project and
generate the packaged application.

1 Click Package.

In the Save Project dialog box, specify the location to save the project.
2 In the Package dialog box, verify that Open output folder when process completes is

selected.

When the packaging process is complete, examine the generated output in the target folder.

• Three folders are generated: for_redistribution, for_redistribution_files_only,
and for_testing.

For more information about the files generated in these folders, see “Files Generated After
Packaging MATLAB Functions” on page 1-10.

• The log file PackagingLog.html contains packaging results.

Create C Shared Library Using compiler.build.cSharedLibrary
As an alternative to the Library Compiler app, you can create a C shared library using a
programmatic approach. If you have already created a library using the Library Compiler, see
“Implement C Shared Library in C Application” on page 2-6.

• Build the C shared library using the compiler.build.cSharedLibrary function. Use name-
value arguments to specify the library name and enable verbose output.
buildResults = compiler.build.cSharedLibrary(["addmatrix.m", ...
"eigmatrix.m","multiplymatrix.m"], ...
'LibraryName','libmatrix', ...
'Verbose','on');

You can specify additional options in the compiler.build command by using name-value
arguments. For details, see compiler.build.cSharedLibrary.

The compiler.build.Results object buildResults contains information on the build type,
generated files, included support packages, and build options.

The function generates the following files within a folder named libmatrixcSharedLibrary in
your current working directory:

• GettingStarted.html — HTML file that contains information on integrating your shared
library.

• includedSupportPackages.txt — Text file that lists all support files included in the
library.

• libmatrix.c — C source code file.
• libmatrix.def — Module-definition file that provides the linker with module information.
• libmatrix.dll — Dynamic-link library file.
• libmatrix.exports — Exports file that contains all nonstatic function names.
• libmatrix.h — C header file.

 Create a C Shared Library with MATLAB Code

2-5

• libmatrix.lib — Import library file. The file extension is .dylib on Mac and .so on
UNIX®.

• mccExcludedFiles.log — Log file that contains a list of any toolbox functions that were
not included in the application. For information on non-supported functions, see MATLAB
Compiler Limitations.

• readme.txt — Text file that contains packaging information.
• requiredMCRProducts.txt — Text file that contains product IDs of products required by

MATLAB Runtime to run the application.
• unresolvedSymbols.txt — Text file that contains information on unresolved symbols.

Note The generated library does not include MATLAB Runtime or an installer. To create an
installer using the buildResults object, see compiler.package.installer.

Implement C Shared Library in C Application
To implement your shared library using the provided C application code, see “Implement a C Shared
Library with a Driver Application”.

See Also
libraryCompiler | compiler.build.cSharedLibrary | deploytool

More About
• “Implement a C Shared Library with a Driver Application”
• “Call a C Shared Library”
• “Generate a C++ mwArray API Shared Library and Build a C++ Application” on page 2-7
• “Generate a C++ MATLAB Data API Shared Library and Build a C++ Application” on page 2-

13

2 Examples

2-6

Generate a C++ mwArray API Shared Library and Build a C++
Application

Supported platform: Windows, Linux, Mac

This example shows how to create a C++ shared library from a MATLAB function. You can integrate
the generated library into a C++ application. This example also shows how to call the C++ shared
library from a C++ application. The target system does not require a licensed copy of MATLAB.

Create Functions in MATLAB
In MATLAB, examine the MATLAB code that you want packaged. For this example, open
addmatrix.m located in matlabroot\extern\examples\compilersdk\c_cpp\matrix.

addmatrix.m

function a = addmatrix(a1, a2)

a = a1 + a2;

At the MATLAB command prompt, enter:

addmatrix([1 4 7; 2 5 8; 3 6 9], [1 4 7; 2 5 8; 3 6 9])

The output is:

 ans =
 2 8 14
 4 10 16
 6 12 18

Create a C++ Shared Library Using the Library Compiler App
1 On the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In Application

Deployment, click Library Compiler.

Alternatively, you can open the Library Compiler app from the MATLAB command prompt by
entering:

libraryCompiler
2 In the Type section of the toolstrip, click C++ Shared Library.

In the Library Compiler app project window, specify the files of the MATLAB application that
you want to deploy.

a
In the Exported Functions section of the toolstrip, click .

b In the Add Files window, browse to the example folder, and select the function you want to
package. Click Open.

The function is added to the list of exported function files. Repeat this step to package multiple
files in the same application.

 Generate a C++ mwArray API Shared Library and Build a C++ Application

2-7

For this example, navigate to matlabroot\extern\examples\compilersdk\c_cpp\matrix
and select addmatrix.m.

3 In the Packaging Options section of the toolstrip, decide whether to include the MATLAB
Runtime installer in the generated application by selecting one of the options:

• Runtime downloaded from web — Generate an installer that downloads the MATLAB
Runtime and installs it along with the deployed MATLAB application. You can specify the file
name of the installer.

• Runtime included in package — Generate an application that includes the MATLAB
Runtime installer. You can specify the file name of the installer.

Note The first time you select this option, you are prompted to download the MATLAB
Runtime installer.

Specify Shared Library Settings

1 The Library Name field is automatically populated with addmatrix as the name of the
packaged shared library. Rename it as libmatrix. The same name is followed through in the
implementation of the shared library.

2 Add MATLAB files to generate the sample C++ driver files. Although C++ driver files are not
necessary to create shared libraries, they are used to demonstrate how to “Implement C++
mwArray API Shared Library with Driver Application” on page 2-10.

In the Samples section, select Create New Sample, and click addmatrix.m. A MATLAB file
opens for you to edit. Define the input variables as necessary for your application, save the file,
and return to the Library Compiler app. For more information and limitations, see “Sample
Driver File Creation” on page 3-5.

3 Edit the MATLAB file that opens with the following values:

% Sample script to demonstrate execution of function a = addmatrix(a1, a2)
a1 = [1 4 7; 2 5 8; 3 6 9]; % Initialize a1 here
a2 = a1; % Initialize a2 here
a = addmatrix(a1, a2);

Save the file, and return to the Library Compiler app. For more information and limitations, see
“Sample Driver File Creation” on page 3-5.

4 Select the type of API for the generated C++ shared libraries. In the API selection section at
the bottom, select Create interface that uses the mwArray API. For more information, see
“API Selection for C++ Shared Library” on page 3-7.

Customize the Application and Its Appearance

In the Library Compiler app, you can customize the installer, customize your application, and add
more information about the application.

• Library information — Information about the deployed application. You can also customize the
appearance of the application by changing the application icon and splash screen. The generated
installer uses this information to populate the installed application metadata. See “Customize the
Installer” on page 3-2.

• Additional installer options — Default installation path for the generated installer and custom
logo selection. See “Change the Installation Path” on page 3-3.

2 Examples

2-8

• Files required for your library to run — Additional files required by the generated application
to run. These files are included in the generated application installer. See “Manage Required Files
in Compiler Project” on page 3-4.

• Files installed for your end user — Files that are installed with your application.

See “Specify Files to Install with Application” on page 3-6.

Package the Application

When you are finished selecting your packaging options, save your Library Compiler project and
generate the packaged application.

1 Click Package.

In the Save Project dialog box, specify the location to save the project.
2 In the Package dialog box, verify that Open output folder when process completes is

selected.

When the packaging process is complete, examine the generated output in the target folder.

• Three folders are generated: for_redistribution, for_redistribution_files_only,
and for_testing.

For more information about the files generated in these folders, see “Files Generated After
Packaging MATLAB Functions” on page 1-10.

• The log file PackagingLog.html contains packaging results.

Create C++ Shared Library Using compiler.build.cppSharedLibrary
As an alternative to the Library Compiler app, you can create a C++ shared library using a
programmatic approach. If you have already created a library using the Library Compiler, see
“Implement C++ mwArray API Shared Library with Driver Application” on page 2-10.

1 Save the path to the addmatrix.m file located in matlabroot\extern\examples
\compilersdk\c_cpp\matrix.
appFile = fullfile(matlabroot,'extern','examples','compilersdk','c_cpp','matrix','addmatrix.m');

2 Save the following code in a sample file named addmatrixSample1.m:

a1 = [1 4 7; 2 5 8; 3 6 9];
a2 = a1;
a = addmatrix(a1, a2);

3 Build the C++ shared library using the compiler.build.cppSharedLibrary function. Use
name-value arguments to add a sample file and specify the library name and interface API.
buildResults = compiler.build.cppSharedLibrary(appFile, ...
'LibraryName','libmatrix', ...
'Interface','mwarray', ...
'SampleGenerationFiles','addmatrixSample1.m');

You can specify additional options in the compiler.build command by using name-value
arguments. For details, see compiler.build.cppSharedLibrary.

The compiler.build.Results object buildResults contains information on the build type,
generated files, included support packages, and build options.

 Generate a C++ mwArray API Shared Library and Build a C++ Application

2-9

The function generates the following files within a folder named libmatrixcppSharedLibrary
in your current working directory:

• samples\addmatrixSample1_mwarray.cpp — C++ sample driver file.
• GettingStarted.html — HTML file that contains information on integrating your shared

library.
• includedSupportPackages.txt — Text file that lists all support files included in the

library.
• libmatrix.cpp — C++ source code file.
• libmatrix.def — Module-definition file that provides the linker with module information.
• libmatrix.dll — Dynamic-link library file.
• libmatrix.exports — Exports file that contains all nonstatic function names.
• libmatrix.h — C++ header file.
• libmatrix.lib — Import library file.
• mccExcludedFiles.log — Log file that contains a list of any toolbox functions that were

not included in the application. For information on non-supported functions, see MATLAB
Compiler Limitations.

• readme.txt — Text file that contains packaging information.
• requiredMCRProducts.txt — Text file that contains product IDs of products required by

MATLAB Runtime to run the application.
• unresolvedSymbols.txt — Text file that contains information on unresolved symbols.

Note The generated library does not include MATLAB Runtime or an installer. To create an
installer using the buildResults object, see compiler.package.installer.

Implement C++ mwArray API Shared Library with Driver Application
After packaging your C++ shared libraries, you can call them from a C++ application. The C++
application that you create uses the sample C++ driver code generated during packaging. The C++
driver code calls the C++ shared libraries, and it is based on the sample MATLAB file you selected in
previous setup steps.

These steps are also explained in the GettingStarted.html file in
for_redistribution_files_only folder. Before starting, make sure that you “Install and
Configure MATLAB Runtime”, and that you have a C++ compiler installed.

1 Copy and paste the generated C++ driver code file addmatrixSample1_mwarray.cpp from the
samples folder into the folder that contains libmatrix.lib.

The program listing for addmatrixSample1_mwarray.cpp is shown below.
/*===
 *
 * ADDMATRIXSAMPLE1
 * CPP Sample driver code for libmatrix that calls a shared library created
 * using MATLAB Compiler SDK.
 * Refer to the MATLAB Compiler SDK documentation for more information.
 *
 ===/
// Include the library specific header file as generated by the
// MATLAB Compiler
#include <iostream>

2 Examples

2-10

https://www.mathworks.com/support/requirements/supported-compilers.html

#include "libmatrix.h"

void addmatrixSample()
{
 mxDouble a1InData[] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0};
 mwArray a1In(3, 3, mxDOUBLE_CLASS);
 a1In.SetData(a1InData, 9);

 mxDouble a2InData[] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0};
 mwArray a2In(3, 3, mxDOUBLE_CLASS);
 a2In.SetData(a2InData, 9);

 mwArray aOut;
 try
 {
 addmatrix(1, aOut, a1In, a2In);
 std::cout << aOut << std::endl;
 }
 catch (const mwException& e)
 {
 std::cerr << e.what() << std::endl;
 }
 catch (...)
 {
 std::cerr << "Unexpected error thrown" << std::endl;
 }
}

int run_main(int argc, const char **argv)
{
 if (!libmatrixInitialize())
 {
 std::cerr << "Could not initialize the library properly" << std::endl;
 return -2;
 }
 else
 {
 addmatrixSample();
 // Call the application and library termination routine
 libmatrixTerminate();
 }
 // Note that you should call mclTerminateApplication at the end of
 // your application to shut down all MATLAB Runtime instances.
 mclTerminateApplication();
 return 0;
}

// The main routine. On macOS, the main thread runs the system code, and
// user code must be processed by a secondary thread. On other platforms,
// the main thread runs both the system code and the user code.
int main(int argc, const char **argv)
{
 /* Call the mclInitializeApplication routine. Make sure that the application
 * was initialized properly by checking the return status. This initialization
 * has to be done before calling any MATLAB APIs or MATLAB Compiler SDK
 * generated shared library functions.
 */
 if (!mclInitializeApplication(nullptr, 0))
 {
 std::cerr << "Could not initialize the application." << std::endl;
 return -1;
 }
 return mclRunMain(static_cast<mclMainFcnType>(run_main), argc, argv);
}

2 At the system command prompt, navigate to the folder where you copied
addmatrixSample1_mwarray.cpp.

3 Compile and link the application using mbuild at the MATLAB prompt or your system command
prompt.

mbuild addmatrixSample1_mwarray.cpp libmatrix.lib

Note The .lib extension is used on Windows. On macOS, the file extension is .dylib, and on
Linux it is .so.

 Generate a C++ mwArray API Shared Library and Build a C++ Application

2-11

4 From the system command prompt, run the application. If you used sample MATLAB code in the
packaging steps, this application returns the same output as the MATLAB code.

addmatrixSample1_mwarray.exe

2 8 14
4 10 16
6 12 18

See Also
libraryCompiler | compiler.build.cppSharedLibrary | mcc | deploytool

Related Examples
• “Generate a C++ MATLAB Data API Shared Library and Build a C++ Application” on page 2-

13

2 Examples

2-12

Generate a C++ MATLAB Data API Shared Library and Build a C
++ Application

Supported platform: Windows, Linux, Mac

This example shows how to create a C++ shared library from a MATLAB function. You can integrate
the generated library into a C++ application. This example also shows how to call the C++ shared
library from a C++ application. The target system does not require a licensed copy of MATLAB to run
the application.

Create Functions in MATLAB
In MATLAB, examine the MATLAB code that you want packaged. For this example, open
addmatrix.m located in matlabroot\extern\examples\compilersdk\c_cpp\matrix.

addmatrix.m

function a = addmatrix(a1, a2)

a = a1 + a2;

At the MATLAB command prompt, enter:

addmatrix([1 4 7; 2 5 8; 3 6 9], [1 4 7; 2 5 8; 3 6 9])

The output is:

 ans =
 2 8 14
 4 10 16
 6 12 18

Create a C++ Shared Library Using Library Compiler App
1 On the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In Application

Deployment, click Library Compiler.

Alternatively, you can open the Library Compiler app from the MATLAB command prompt by
entering:

libraryCompiler
2 In the Type section of the toolstrip, click C++ Shared Library.

In the Library Compiler app project window, specify the files of the MATLAB application that
you want to deploy.

a
In the Exported Functions section of the toolstrip, click .

b In the Add Files window, browse to the example folder, and select the function you want to
package. Click Open.

The function is added to the list of exported function files. Repeat this step to package multiple
files in the same application.

 Generate a C++ MATLAB Data API Shared Library and Build a C++ Application

2-13

For this example, navigate to matlabroot\extern\examples\compilersdk\c_cpp\matrix
and select addmatrix.m.

3 In the Packaging Options section of the toolstrip, decide whether to include the MATLAB
Runtime installer in the generated application by selecting one of the options:

• Runtime downloaded from web — Generate an installer that downloads the MATLAB
Runtime and installs it along with the deployed MATLAB application. You can specify the file
name of the installer.

• Runtime included in package — Generate an application that includes the MATLAB
Runtime installer. You can specify the file name of the installer.

Note The first time you select this option, you are prompted to download the MATLAB
Runtime installer.

Specify Shared Library Settings

1 The Library Name field is automatically populated with addmatrix as the name of the
packaged shared library. Rename it as libmatrix. The same name is followed through in the
implementation of the shared library.

2 In the Samples section, select Create New Sample, and click addmatrix.m.

In the MATLAB file that opens, edit the code to initialize a1 to a nonzero value:

a1 = [1 4 7; 2 5 8; 3 6 9]; % Initialize a1 here
a2 = a1; % Initialize a2 here
a = addmatrix(a1, a2);

Save the file and return to the Library Compiler app. For more information and limitations, see
“Sample Driver File Creation” on page 3-5.

3 Select the type of API for the generated C++ shared libraries. In the API selection section at
the bottom, select Create interface that uses the MATLAB Data API. For more information,
see “API Selection for C++ Shared Library” on page 3-7.

Customize the Application and Its Appearance

In the Library Compiler app, you can customize the installer, customize your application, and add
more information about the application.

• Library information — Information about the deployed application. You can also customize the
appearance of the application by changing the application icon and splash screen. The generated
installer uses this information to populate the installed application metadata. See “Customize the
Installer” on page 3-2.

• Additional installer options — Default installation path for the generated installer and custom
logo selection. See “Change the Installation Path” on page 3-3.

• Files required for your library to run — Additional files required by the generated application
to run. These files are included in the generated application installer. See “Manage Required Files
in Compiler Project” on page 3-4.

• Files installed for your end user — Files that are installed with your application.

See “Specify Files to Install with Application” on page 3-6.

2 Examples

2-14

Package the Application

When you are finished selecting your packaging options, save your Library Compiler project and
generate the packaged application.

1 Click Package.

In the Save Project dialog box, specify the location to save the project.
2 In the Package dialog box, verify that Open output folder when process completes is

selected.

When the packaging process is complete, examine the generated output in the target folder.

• Three folders are generated: for_redistribution, for_redistribution_files_only,
and for_testing.

For more information about the files generated in these folders, see “Files Generated After
Packaging MATLAB Functions” on page 1-10.

• The log file PackagingLog.html contains packaging results.

Create C++ Shared Library Using compiler.build.cppSharedLibrary
As an alternative to the Library Compiler app, you can create a C++ shared library using a
programmatic approach. If you have already created a library using the Library Compiler, see
“Implement C++ MATLAB Data API Shared Library with Sample Application” on page 2-16.

1 Save the path to the addmatrix.m file located in matlabroot\extern\examples
\compilersdk\c_cpp\matrix.
appFile = fullfile(matlabroot,'extern','examples','compilersdk','c_cpp','matrix','addmatrix.m');

2 Save the following code in a sample file named addmatrixSample1.m:

a1 = [1 4 7; 2 5 8; 3 6 9];
a2 = a1;
a = addmatrix(a1, a2);

3 Build the C++ shared library using the compiler.build.cppSharedLibrary function. Use
name-value arguments to specify the library name and add a sample file.
buildResults = compiler.build.cppSharedLibrary(appFile, ...
'LibraryName','libmatrix', ...
'SampleGenerationFiles','addmatrixSample1.m');

You can specify additional options in the compiler.build command by using name-value
arguments. For details, see compiler.build.cppSharedLibrary.

The compiler.build.Results object buildResults contains information on the build type,
generated files, included support packages, and build options.

4 This syntax generates the following files within a folder named libmatrixcppSharedLibrary
in your current working directory:

• samples\addmatrixSample1_mda.cpp — C++ sample driver file.
• v2\generic_interface\libmatrix.ctf — Component technology file that contains the

deployable archive.
• v2\generic_interface\readme.txt — Text file that contains packaging information.
• GettingStarted.html — HTML file that contains information on integrating your shared

library.

 Generate a C++ MATLAB Data API Shared Library and Build a C++ Application

2-15

• includedSupportPackages.txt — Text file that lists all support files included in the
library.

• mccExcludedFiles.log — Log file that contains a list of any toolbox functions that were
not included in the application. For information on non-supported functions, see MATLAB
Compiler Limitations.

• readme.txt — Text file that contains packaging and interface information.
• requiredMCRProducts.txt — Text file that contains product IDs of products required by

MATLAB Runtime to run the application.
• unresolvedSymbols.txt — Text file that contains information on unresolved symbols.

Note The generated library does not include MATLAB Runtime or an installer. To create an
installer using the buildResults object, see compiler.package.installer.

Implement C++ MATLAB Data API Shared Library with Sample
Application
After packaging your C++ shared libraries, you can call them from a C++ application. The C++
application that you create uses the sample C++ driver code generated during packaging. The
sample C++ code calls the C++ shared libraries, and it is based on the sample MATLAB file you
created in previous setup steps.

These steps are also explained in the GettingStarted.html file. Before starting, make sure that
you “Install and Configure MATLAB Runtime” and that you have a C++ compiler installed.

1 Copy and paste the generated C++ driver code file addmatrixSample1_mda.cpp from the
samples folder into the v2\generic_interface folder that contains the file libmatrix.ctf.

The program listing for addmatrixSample1_mda.cpp is shown below.
/*===
 *
 * ADDMATRIXSAMPLE1
 * Sample driver code that uses the generic interface and
 * MATLAB Data API to call a C++ shared library created using
 * MATLAB Compiler SDK.
 * Refer to the MATLAB Compiler SDK documentation for more
 * information.
 *
 ===/

// Include the header file required to use the generic
// interface for the C++ shared library generated by the
// MATLAB Compiler SDK.
#include "MatlabCppSharedLib.hpp"
#include <iostream>

namespace mc = matlab::cpplib;
namespace md = matlab::data;

std::shared_ptr<mc::MATLABApplication> setup()
{
 auto mode = mc::MATLABApplicationMode::IN_PROCESS;
 // Specify MATLAB startup options
 std::vector<std::u16string> options = {};
 std::shared_ptr<mc::MATLABApplication> matlabApplication = mc::initMATLABApplication(mode, options);
 return matlabApplication;
}

int mainFunc(std::shared_ptr<mc::MATLABApplication> app, const int argc, const char * argv[])
{
 md::ArrayFactory factory;
 md::TypedArray<double> a1In = factory.createArray<double>({3, 3}, {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0});

2 Examples

2-16

https://www.mathworks.com/support/requirements/supported-compilers.html

 md::TypedArray<double> a2In = factory.createArray<double>({3, 3}, {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0});
 try {
 // The path to the CTF (library archive file) passed to
 // initMATLABLibrary or initMATLABLibraryAsync may be either absolute
 // or relative. If it is relative, the following will be prepended
 // to it, in turn, in order to find the CTF:
 // - the directory named by the environment variable
 // CPPSHARED_BASE_CTF_PATH, if defined
 // - the working directory
 // - the directory where the executable is located
 // - on Mac, the directory three levels above the directory
 // where the executable is located

 // If the CTF is not in one of these locations, do one of the following:
 // - copy the CTF
 // - move the CTF
 // - change the working directory ("cd") to the location of the CTF
 // - set the environment variable to the location of the CTF
 // - edit the code to change the path
 auto lib = mc::initMATLABLibrary(app, u"libmatrix.ctf");
 std::vector<md::Array> inputs{a1In, a2In};
 auto result = lib->feval(u"addmatrix", 1, inputs);
 } catch (const std::exception & exc) {
 std::cerr << exc.what() << std::endl;
 return -1;
 }
 return 0;
}

// The main routine. On the Mac, the main thread runs the system code, and
// user code must be processed by a secondary thread. On other platforms,
// the main thread runs both the system code and the user code.
int main(const int argc, const char * argv[])
{
 int ret = 0;
 try {
 auto matlabApplication = setup();
 ret = mc::runMain(mainFunc, std::move(matlabApplication), argc, argv);
 // Calling reset() on matlabApplication allows the user to control
 // when it is destroyed, which automatically cleans up its resources.
 // Here, the object would go out of scope and be destroyed at the end
 // of the block anyway, even if reset() were not called.
 // Whether the matlabApplication object is explicitly or implicitly
 // destroyed, initMATLABApplication() cannot be called again within
 // the same process.
 matlabApplication.reset();
 } catch(const std::exception & exc) {
 std::cerr << exc.what() << std::endl;
 return -1;
 }
 return ret;
}

2 At the system command prompt, navigate to the generic_interface folder where you copied
addmatrixSample1_mda.cpp.

3 Compile and link the application using mbuild at the system command prompt.

mbuild addmatrixSample1_mda.cpp
4 Run the application from the system command prompt.

addmatrixSample1_mda.exe

The generated C++ code does not display any output.

Note For an example on how to retrieve and display a struct array, a cell array, or a character vector
from an feval call, see the files subtractmatrix.m and subtractmatrix_mda.cpp located in
matlabroot\extern\examples\compilersdk\c_cpp\matrix.

See Also
libraryCompiler | compiler.build.cppSharedLibrary | mcc | deploytool

 Generate a C++ MATLAB Data API Shared Library and Build a C++ Application

2-17

Related Examples
• “Generate a C++ mwArray API Shared Library and Build a C++ Application” on page 2-7

2 Examples

2-18

Generate .NET Assembly and Build .NET Application
Supported platform: Windows

This example shows how to create a .NET assembly from a MATLAB function and integrate the
generated assembly into a .NET application.

Prerequisites
• Verify that you have met all of the MATLAB Compiler SDK .NET target requirements. For details,

see “MATLAB Compiler SDK .NET Target Requirements”.
• Verify that you have Microsoft Visual Studio installed.
• End users must have an installation of MATLAB Runtime to run the application. For details, see

“Install and Configure MATLAB Runtime”.

For testing purposes, you can use an installation of MATLAB instead of MATLAB Runtime.

Files
MATLAB Function matlabroot\toolbox\dotnetbuilder\Examples\VSVersion\NET

\MagicSquareExample\MagicSquareComp\makesquare.m
MWArray API
Reference

matlabroot\help\dotnetbuilder\MWArrayAPI

Create Function in MATLAB
In MATLAB, examine the MATLAB code that you want to package. For this example, open
makesquare.m.

function y = makesquare(x)
y = magic(x);

At the MATLAB command prompt, enter makesquare(5).

The output is a 5-by-5 matrix.

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Create .NET Assembly Using Library Compiler App
Package the function into a .NET assembly using the Library Compiler app. Alternatively, if you
want to create a .NET assembly from the MATLAB command window using a programmatic
approach, see “Create .NET Assembly Using compiler.build.dotNETAssembly” on page 2-23.

1 On the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In Application
Deployment, click Library Compiler.

 Generate .NET Assembly and Build .NET Application

2-19

Alternatively, you can open the Library Compiler app from the MATLAB command prompt.

libraryCompiler

2 In the Type section of the toolstrip, click .NET Assembly.

In the Library Compiler app project window, specify the files of the MATLAB application that
you want to deploy.

a
In the Exported Functions section of the toolstrip, click .

b In the Add Files window, browse to the example folder, and select the function you want to
package. Click Open.

The function is added to the list of exported function files. Repeat this step to package multiple
files in the same application.

For this example, select the file makesquare.m.
3 In the Packaging Options section of the toolstrip, decide whether to include the MATLAB

Runtime installer in the generated application by selecting one of the options:

• Runtime downloaded from web — Generate an installer that downloads the MATLAB
Runtime and installs it along with the deployed MATLAB application. You can specify the file
name of the installer.

• Runtime included in package — Generate an application that includes the MATLAB
Runtime installer. You can specify the file name of the installer.

Note The first time you select this option, you are prompted to download the MATLAB
Runtime installer.

Specify Assembly File Settings

Next, define the name of your assembly and verify the class mapping for the .m file that you are
building into your application.

1 The Library Name field is automatically populated with makesquare as the name of the
assembly. Rename it as MagicSquareComp. The same name is followed through in the
implementation of the assembly.

2 Verify that the function defined in makesquare.m is mapped into MagicSquareClass. Double-
click on the class to change the class name.

2 Examples

2-20

Create Sample Driver File

You can use any MATLAB file in the project to generate sample .NET driver files. Although .NET
driver files are not necessary to create an assembly, you can use them to implement the generated
assembly into a .NET application in the target language, as shown in “Integrate .NET Assembly
Into .NET Application” on page 2-24.

In the Samples section, select Create New Sample, and click makesquare.m. A MATLAB file opens
for you to edit.

% Sample script to demonstrate execution of function y = makesquare(x)
x = 0; % Initialize x here
y = makesquare(x);

Change x = 0 to x = 5, save the file, and return to the Library Compiler app.

For more information and limitations, see “Sample Driver File Creation” on page 3-5.

Customize Application and Its Appearance

In the Library Compiler app, you can customize the installer, customize your application, and add
more information about the application.

• Library information — Information about the deployed application. You can also customize the
appearance of the application by changing the application icon and splash screen. The generated
installer uses this information to populate the installed application metadata. See “Customize the
Installer” on page 3-2.

• Additional installer options — Default installation path for the generated installer and custom
logo selection. See “Change the Installation Path” on page 3-3.

• Files required for your library to run — Additional files required by the generated application
to run. These files are included in the generated application installer. See “Manage Required Files
in Compiler Project” on page 3-4.

• Files installed for your end user — Files that are installed with your application.

See “Specify Files to Install with Application” on page 3-6.

• Additional runtime settings — Platform-specific options for controlling the generated
executable. See “Additional Runtime Settings” on page 3-6.

 Generate .NET Assembly and Build .NET Application

2-21

Package the Application

When you are finished selecting your packaging options, save your Library Compiler project and
generate the packaged application.

1 Click Package.

In the Save Project dialog box, specify the location to save the project.

2 Examples

2-22

2 In the Package dialog box, verify that Open output folder when process completes is
selected.

When the packaging process is complete, examine the generated output in the target folder.

• Three folders are generated: for_redistribution, for_redistribution_files_only,
and for_testing.

For more information about the files generated in these folders, see “Files Generated After
Packaging MATLAB Functions” on page 1-10.

• The log file PackagingLog.html contains packaging results.

Create .NET Assembly Using compiler.build.dotNETAssembly
As an alternative to the Library Compiler app, you can create a .NET assembly using a
programmatic approach. If you have already created an assembly using the Library Compiler, see
“Integrate .NET Assembly Into .NET Application” on page 2-24.

1 Save the path to the file makesquare.m located in matlabroot\toolbox\dotnetbuilder
\Examples\VSVersion\NET\MagicSquareExample\MagicSquareComp. For example, if you
are using Visual Studio version 15, type:
appFile = fullfile(matlabroot,'toolbox','dotnetbuilder','Examples', ...
 'VS15','NET','MagicSquareExample','MagicSquareComp','makesquare.m');

2 Save the following code in a sample file named makesquareSample1.m:

x = 5;
y = makesquare(x);

3 Build the .NET assembly using the compiler.build.dotNETAssembly function. Use name-
value arguments to specify the assembly name, class name, and sample file.
buildResults = compiler.build.dotNETAssembly(appFile, ...
'AssemblyName','MagicSquareComp', ...
'ClassName','MagicSquareClass', ...
'SampleGenerationFiles','makesquareSample1.m');

You can specify additional options in the compiler.build command by using name-value
arguments. For details, see compiler.build.dotNETAssembly.

The compiler.build.Results object buildResults contains information on the build type,
generated files, included support packages, and build options.

The function generates the following files within a folder named
MagicSquareCompdotNETAssembly in your current working directory:

• samples\makesquareSample1.cs — .NET sample driver file.
• GettingStarted.html — HTML file that contains steps on compiling .NET driver

applications from the command line.
• includedSupportPackages.txt — Text file that lists all support files included in the

assembly.
• MagicSquareComp.dll — Dynamic-link library file that can be accessed using the mwArray

API.
• MagicSquareComp.xml — XML file that contains documentation for the mwArray assembly.
• MagicSquareComp_overview.html — HTML file that contains requirements for accessing

the assembly and for generating arguments using the mwArray class hierarchy.

 Generate .NET Assembly and Build .NET Application

2-23

• MagicSquareCompNative.dll — Dynamic-link library file that can be accessed using the
native API.

• MagicSquareCompNative.xml — XML file that contains documentation for the native
assembly.

• MagicSquareCompVersion.cs — C# file that contains version information.
• mccExcludedFiles.log — Log file that contains a list of any toolbox functions that were

not included in the application. For information on non-supported functions, see MATLAB
Compiler Limitations.

• readme.txt — Text file that contains packaging and interface information.
• requiredMCRProducts.txt — Text file that contains product IDs of products required by

MATLAB Runtime to run the application.
• unresolvedSymbols.txt — Text file that contains information on unresolved symbols.

Note The generated assembly does not include MATLAB Runtime or an installer. To create an
installer using the buildResults object, see compiler.package.installer.

Integrate .NET Assembly Into .NET Application
After creating your .NET assembly, you can integrate it into any .NET application. This example uses
the sample .NET application code generated during packaging. You can use this sample .NET
application code as a guide to write your own application.

1 Open Microsoft Visual Studio and create a C# Console App (.NET Framework) called
MainApp.

2 Remove any source code files that were created within your project, if necessary.
3 Add the generated sample .NET application code makesquareSample1.cs in the

for_redistribution_files_only\samples folder to the project.

The program listing is shown below.
using System;
using System.Collections.Generic;
using System.Text;
using MathWorks.MATLAB.NET.Arrays;
using MathWorks.MATLAB.NET.Utility;
using MagicSquareComp;

/// <summary>
/// Sample driver code that integrates a compiled MATLAB function
/// generated by MATLAB Compiler SDK
///
/// Refer to the MATLAB Compiler SDK documentation for more
/// information.
/// </summary>
class makesquareSample1 {
 static MagicSquareClass MagicSquareClassInstance;

 static void Setup() {
 MagicSquareClassInstance = new MagicSquareClass();
 }

 /// <summary>
 /// Example of using the var function.
 /// </summary>
 public static void makesquareSample() {
 double xInData = 5.0;
 MWNumericArray yOut = null;
 Object[] results = null;
 try {
 MWNumericArray xIn = new MWNumericArray(xInData);
 results = MagicSquareClassInstance.makesquare(1, xIn);

2 Examples

2-24

 if (results[0] is MWNumericArray) {
 yOut = (MWNumericArray) results[0];
 }
 Console.WriteLine(yOut);
 } catch (Exception e) {
 Console.WriteLine(e);
 }
 }

 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 static void Main(string[] args) {
 try {
 Setup();
 } catch (Exception e) {
 Console.WriteLine(e);
 Environment.Exit(1);
 }
 try {
 makesquareSample();
 } catch (Exception e) {
 Console.WriteLine(e);
 Environment.Exit(1);
 }
 }
}

4 In Visual Studio, add a reference to your assembly file MagicSquareComp.dll located in the
folder where you generated or installed the assembly.

5 Add a reference to the MWArray API.

If MATLAB is
installed on your
system

matlabroot\toolbox\dotnetbuilder\bin\<arch>
\<framework_version>\MWArray.dll

If MATLAB
Runtime is
installed on your
system

<MATLAB_RUNTIME_INSTALL_DIR>\toolbox\dotnetbuilder\bin
\<arch>\<framework_version>\MWArray.dll

6 Go to Build, then Configuration Manager, and change the platform from Any CPU to x64.
7 After you finish adding your code and references, build the application with Visual Studio.

The build process generates an executable named makesquareSample1.exe.
8 Run the application from Visual Studio, in a command window, or by double-clicking the

generated executable.

The application returns the same output as the sample MATLAB code.

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Note This example shows how to call the .NET assembly from a sample C# application. To call the
assembly from a Visual Basic application, use the Microsoft Visual Studio project file
MagicSquareVBApp.vbproj and Visual Basic file MagicSquareApp.vb located in

matlabroot\toolbox\dotnetbuilder\Examples\VSVersion\NET\MagicSquareExample\MagicSquareVBApp\

See Also
libraryCompiler | compiler.build.dotNETAssembly | mcc | deploytool

 Generate .NET Assembly and Build .NET Application

2-25

Related Examples
• “Build .NET Core Application That Runs on Linux and macOS”
• “Integrate Simple MATLAB Function Into .NET Application”

2 Examples

2-26

Create a Generic COM Component with MATLAB Code
Supported platform: Windows

This example shows how to create a generic COM component using a MATLAB function and integrate
it into an application. The target system does not require a licensed copy of MATLAB.

Prerequisites
• Verify that you have the Windows 10 SDK kit installed. For details, see Windows 10 SDK.
• Verify that you have MinGW-w64 installed. To install it from the MathWorks File Exchange, see

MATLAB Support for MinGW-w64 C/C++ Compiler.

To ensure that MATLAB detects the Windows 10 SDK kit and MinGW-w64, use the following
command:

mbuild -setup -client mbuild_com

• Verify that you have Microsoft Visual Studio installed.
• End users must have an installation of MATLAB Runtime to run the application. For details, see

“Install and Configure MATLAB Runtime”.

For testing purposes, you can use an installation of MATLAB instead of MATLAB Runtime.

Create Function in MATLAB
In MATLAB, examine the MATLAB code that you want packaged. For this example, open
makesquare.m located in matlabroot\toolbox\dotnetbuilder\Examples\VSVersion\COM
\MagicSquareExample\MagicSquareComp.

function y = makesquare(x)
y = magic(x);

At the MATLAB command prompt, enter makesquare(5).

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Create Generic COM Component Using Library Compiler App
Package the function into a COM component using the Library Compiler app. Alternatively, if you
want to create a COM component from the MATLAB command window using a programmatic
approach, see “Create COM Component Using compiler.build.COMComponent” on page 2-30.

1 On the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In Application
Deployment, click Library Compiler. In the MATLAB Compiler project window, click Generic
COM Component.

 Create a Generic COM Component with MATLAB Code

2-27

https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk/
https://www.mathworks.com/matlabcentral/fileexchange/52848-matlab-support-for-mingw-w64-c-c-compiler

Alternately, you can open the Library Compiler app by entering libraryCompiler at the
MATLAB prompt.

2 In the Library Compiler app project window, specify the files of the MATLAB application that
you want to deploy.

a
In the Exported Functions section of the toolstrip, click .

b In the Add Files window, browse to the example folder, and select the function you want to
package. Click Open.

The function is added to the list of exported function files. Repeat this step to package multiple
files in the same application.

3 In the Packaging Options section of the toolstrip, decide whether to include the MATLAB
Runtime installer in the generated application by selecting one of the options:

• Runtime downloaded from web — Generate an installer that downloads the MATLAB
Runtime and installs it along with the deployed MATLAB application. You can specify the file
name of the installer.

• Runtime included in package — Generate an application that includes the MATLAB
Runtime installer. You can specify the file name of the installer.

Note The first time you select this option, you are prompted to download the MATLAB
Runtime installer.

4 In the Library Name field, replace makesquare with MagicSquareComp.
5 Verify that the function defined in makesquare.m is mapped into Class1.

Customize the Application and Its Appearance
In the Library Compiler app, you can customize the installer, customize your application, and add
more information about the application.

• Library information — Information about the deployed application. You can also customize the
appearance of the application by changing the application icon and splash screen. The generated

2 Examples

2-28

installer uses this information to populate the installed application metadata. See “Customize the
Installer” on page 3-2.

• Additional installer options — Default installation path for the generated installer and custom
logo selection. See “Change the Installation Path” on page 3-3.

• Files required for your library to run — Additional files required by the generated application
to run. These files are included in the generated application installer. See “Manage Required Files
in Compiler Project” on page 3-4.

• Files installed for your end user — Files that are installed with your application.

See “Specify Files to Install with Application” on page 3-6.

• Additional runtime settings — Platform-specific options for controlling the generated
executable. See “Additional Runtime Settings” on page 3-6.

Package the Application
When you are finished selecting your packaging options, save your Library Compiler project and
generate the packaged application.

 Create a Generic COM Component with MATLAB Code

2-29

1 Click Package.

In the Save Project dialog box, specify the location to save the project.
2 In the Package dialog box, verify that Open output folder when process completes is

selected.

When the packaging process is complete, examine the generated output in the target folder.

• Three folders are generated: for_redistribution, for_redistribution_files_only,
and for_testing.

For more information about the files generated in these folders, see “Files Generated After
Packaging MATLAB Functions” on page 1-10.

• The log file PackagingLog.html contains packaging results.

Create COM Component Using compiler.build.COMComponent
As an alternative to the Library Compiler app, you can create a COM component using a
programmatic approach. If you have already created a component using the Library Compiler, see
“Integrate into COM Application” on page 2-31.

1 Save the path to the file makesquare.m located in matlabroot\toolbox\dotnetbuilder
\Examples\VSVersion\COM\MagicSquareExample\MagicSquareComp. For example, if you
are using Visual Studio version 15, type:
appFile = fullfile(matlabroot,'toolbox','dotnetbuilder','Examples', ...
 'VS15','COM','MagicSquareExample','MagicSquareComp','makesquare.m');

2 Build the COM component using the compiler.build.comComponent function. Use name-
value arguments to specify the component name and class name.
buildResults = compiler.build.comComponent(appFile, ...
'ComponentName','MagicSquareComp', ...
'ClassName','Class1');

You can specify additional options in the compiler.build command by using name-value
arguments. For details, see compiler.build.comComponent.

The compiler.build.Results object buildResults contains information on the build type,
generated files, included support packages, and build options.

The function generates the following files within a folder named
MagicSquareCompcomComponent in your current working directory:

• magicsquare.def
• magicsquare.rc
• magicsquare_1_0.dll
• readme.txt
• requiredMCRProducts.txt
• unresolvedSymbols.txt

• Class1_com.cpp — C++ source code file that defines the class.
• Class1_com.hpp — C++ header file that defines the class.
• dlldata.c — C source code file that contains entry points and data structures required by

the class factory for the DLL.

2 Examples

2-30

• GettingStarted.html — HTML file that contains steps on installing COM components.
• includedSupportPackages.txt — Text file that contains information on included support

packages.
• MagicSquareComp.def — Module definition file that defines which functions to include in

the DLL export table.
• MagicSquareComp.rc — Resource script file that describes the resources used by the

component.
• MagicSquareComp_1_0.dll — Dynamic-link library file.
• MagicSquareComp_dll.cpp — C++ source code file that contains helper functions.
• MagicSquareComp_idl.h — C++ header file.
• MagicSquareComp_idl.idl — Interface definition language file.
• MagicSquareComp_idl.tlb — Type library file that contains information about the COM

object properties and methods.
• MagicSquareComp_idl_i.c — C source code file that contains the IIDs and CLSIDs for the

IDL interface.
• MagicSquareComp_idl_p.c — C source code file that contains the proxy stub code for the

IDL interface.
• mccExcludedFiles.log — Log file that contains a list of any toolbox functions that were

not included in the application. For information on non-supported functions, see MATLAB
Compiler Limitations.

• mwcomtypes.h — C++ header file that contains the definitions for the interfaces.
• mwcomtypes_i.c — C source code file that contains the IIDs and CLSIDs.
• mwcomtypes_p.c — C source code file that contains the proxy stub code.
• readme.txt — Text file that contains deployment information.
• requiredMCRProducts.txt — Text file that contains product IDs of products required by

MATLAB Runtime to run the application.
• unresolvedSymbols.txt — Text file that contains information on unresolved symbols.

Note The generated component does not include MATLAB Runtime or an installer. To create an
installer using the buildResults object, see compiler.package.installer.

Integrate into COM Application
To integrate your COM component into an application, see “Creating the Microsoft Visual Basic
Project”.

See Also
libraryCompiler | compiler.build.comComponent | mcc | deploytool

More About
• “Call COM Objects in Visual C++ Programs”

 Create a Generic COM Component with MATLAB Code

2-31

Generate Java Package and Build Java Application
Supported platforms: Windows, Linux, Mac

This example shows how to create a Java package from a MATLAB function and generate sample Java
code.

Prerequisites
• Verify that you have a version of Java installed that is compatible with MATLAB Compiler SDK. For

information on supported Java versions, see MATLAB Interfaces to Other Languages.

For information on configuring your development environment after installation, see “Configure
Your Java Environment for Generating Packages”.

• End users must have an installation of MATLAB Runtime to run the application. For details, see
“Install and Configure MATLAB Runtime”.

For testing purposes, you can use an installation of MATLAB instead of MATLAB Runtime.

Create Function in MATLAB
In MATLAB, examine the MATLAB code that you want to package. For this example, open makesqr.m
located in matlabroot\toolbox\javabuilder\Examples\MagicSquareExample
\MagicDemoComp.

function y = makesqr(x)
y = magic(x);

At the MATLAB command prompt, enter makesqr(5).

The output is a 5-by-5 matrix.

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Create Java Package Using Library Compiler App
Compile the function into a Java package using the Library Compiler app. Alternatively, if you want
to create a Java package from the MATLAB command window using a programmatic approach, see
“Create Java Package Using compiler.build.javaPackage” on page 2-36.

1 On the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In Application
Deployment, click Library Compiler.

Alternatively, you can open the Library Compiler app from the MATLAB command prompt by
entering:

libraryCompiler

2 Examples

2-32

https://www.mathworks.com/support/requirements/supported-compilers.html

2 In the Type section of the toolstrip, click Java Package.

In the Library Compiler app project window, specify the files of the MATLAB application that
you want to deploy.

a
In the Exported Functions section of the toolstrip, click .

b In the Add Files window, browse to the example folder, and select the function you want to
package. Click Open.

The function is added to the list of exported function files. Repeat this step to package multiple
files in the same application.

For this example, select the file makesqr.m.
3 In the Packaging Options section of the toolstrip, decide whether to include the MATLAB

Runtime installer in the generated application by selecting one of the options:

• Runtime downloaded from web — Generate an installer that downloads the MATLAB
Runtime and installs it along with the deployed MATLAB application. You can specify the file
name of the installer.

• Runtime included in package — Generate an application that includes the MATLAB
Runtime installer. You can specify the file name of the installer.

Note The first time you select this option, you are prompted to download the MATLAB
Runtime installer.

Specify Package Settings

Next, define the name of your Java package and verify the class mapping for the .m file that you are
building into your application.

1 Choose a name for your package. The Library Name field is automatically populated with
makesqr as the name of the package. The same name is followed through in the package
implementation steps below.

2 Verify that the function defined in makesqr.m is mapped into Class1.

 Generate Java Package and Build Java Application

2-33

Create Sample Driver File

You can use any MATLAB file in the project to generate sample Java driver files. Although Java driver
files are not necessary to create a package, you can use them to implement a Java application, as
shown in “Compile and Run MATLAB Generated Java Application” on page 2-37.

In the Samples section, select Create New Sample, and click makesqr.m. A MATLAB file opens for
you to edit.

% Sample script to demonstrate execution of function y = makesqr(x)
x = 0; % Initialize x here
y = makesqr(x);

Change x = 0 to x = 5, save the file, and return to the Library Compiler app. The compiler
converts this MATLAB code to Java code during packaging.

For more information and limitations, see “Sample Driver File Creation” on page 3-5.

Customize the Application and Its Appearance

In the Library Compiler app, you can customize the installer, customize your application, and add
more information about the application.

• Library information — Information about the deployed application. You can also customize the
appearance of the application by changing the application icon and splash screen. The generated
installer uses this information to populate the installed application metadata. See “Customize the
Installer” on page 3-2.

• Additional installer options — Default installation path for the generated installer and custom
logo selection. See “Change the Installation Path” on page 3-3.

• Files required for your library to run — Additional files required by the generated application
to run. These files are included in the generated application installer. See “Manage Required Files
in Compiler Project” on page 3-4.

• Files installed for your end user — Files that are installed with your application.

See “Specify Files to Install with Application” on page 3-6.

2 Examples

2-34

Package the Application

When you are finished selecting your packaging options, save your Library Compiler project and
generate the packaged application.

1 Click Package.

In the Save Project dialog box, specify the location to save the project.

 Generate Java Package and Build Java Application

2-35

2 In the Package dialog box, verify that Open output folder when process completes is
selected.

When the packaging process is complete, examine the generated output in the target folder.

• Three folders are generated: for_redistribution, for_redistribution_files_only,
and for_testing.

For more information about the files generated in these folders, see “Files Generated After
Packaging MATLAB Functions” on page 1-10.

• The log file PackagingLog.html contains packaging results.

Create Java Package Using compiler.build.javaPackage
As an alternative to the Library Compiler app, you can create a Java package using a programmatic
approach. If you have already created a package using the Library Compiler, see “Compile and Run
MATLAB Generated Java Application” on page 2-37.

1 Save the path to the makesqr.m file located in matlabroot\toolbox\javabuilder
\Examples\MagicSquareExample\MagicDemoComp.
appFile = fullfile(matlabroot,'toolbox','javabuilder','Examples', ...
 'MagicSquareExample','MagicDemoComp','makesqr.m');

2 Save the following code in a sample file named makesqrSample1.m:

x = 5;
y = makesqr(x);

3 Build the Java package using the compiler.build.javaPackage function. Use name-value
arguments to add a sample file and enable verbose output.
buildResults = compiler.build.javaPackage(appFile, ...
'SampleGenerationFiles','makesqrSample1.m', ...
'Verbose','on');

You can specify additional options in the compiler.build command by using name-value
arguments. For details, see compiler.build.javaPackage.

The compiler.build.Results object buildResults contains information on the build type,
generated files, included support packages, and build options.

The function generates the following files and folders within a folder named
makesqrjavaPackage in your current working directory:

• classes — Folder that contains the Java class files and the deployable archive CTF file.
• doc — Folder that contains HTML documentation for all classes in the package.
• example — Folder that contains Java source code files.
• samples — Folder that contains the Java sample driver file makesqrSample1.java.
• GettingStarted.html — File that contains information on integrating your package.
• includedSupportPackages.txt — Text file that lists all support files included in the

package.
• makesqr.jar — Java archive file.
• mccExcludedFiles.log — Log file that contains a list of any toolbox functions that were

not included in the application. For information on non-supported functions, see Functions
Not Supported For Compilation.

2 Examples

2-36

• readme.txt — Text file that contains information on deployment prerequisites and the list of
files to package for deployment.

• requiredMCRProducts.txt — Text file that contains product IDs of products required by
MATLAB Runtime to run the application.

• unresolvedSymbols.txt — Text file that contains information on unresolved symbols.

Note The generated package does not include MATLAB Runtime or an installer. To create an
installer using the buildResults object, see compiler.package.installer.

Compile and Run MATLAB Generated Java Application
After creating your Java package, you can call it from a Java application. This example uses the
sample Java code generated during packaging. You can use this sample Java application code as a
guide to write your own application.

1 Copy and paste the generated Java file makesqrSample1.java from the samples folder into
the folder that contains the makesqr.jar package. If you used the Library Compiler,
makesqr.jar is located in the for_testing folder.

2 At the system command prompt, navigate to the folder that contains makesqrSample1.java
and makesqr.jar.

3 Compile the application using javac. In the classpath argument, you specify the paths to
javabuilder.jar, which contains the com.mathworks.toolbox.javabuilder package, and
your generated Java package makesqr.jar.

• On Windows, type:
javac -classpath "matlabroot\toolbox\javabuilder\jar\javabuilder.jar";.\makesqr.jar makesqrSample1.java

• On UNIX, type:
javac -classpath "matlabroot/toolbox/javabuilder/jar/javabuilder.jar":./makesqr.jar makesqrSample1.java

Replace matlabroot with the path to your MATLAB or MATLAB Runtime installation folder.
For example, on Windows, the path may be C:\Program Files\MATLAB\R2022a.

Note If makesqr.jar or makesqrSample1.java is not in the current directory, specify the
full or relative path in the command. If the path contains spaces, surround it with double
quotes.

4 Run the application using java.

• On Windows, type:
java -classpath .;"matlabroot\toolbox\javabuilder\jar\javabuilder.jar";.\makesqr.jar makesqrSample1

• On UNIX, type:
java -classpath .:"matlabroot/toolbox/javabuilder/jar/javabuilder.jar":./makesqr.jar makesqrSample1

Note The dot (.) in the first position of the class path represents the current working
directory. If it is not there, you get a message stating that Java cannot load the class.

The application returns the same output as the sample MATLAB code.

 17 24 1 8 15
 23 5 7 14 16

 Generate Java Package and Build Java Application

2-37

 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

See Also
libraryCompiler | compiler.build.javaPackage | mcc | deploytool

Related Examples
• “Integrate Simple MATLAB Function Into Java Application”
• “Display MATLAB Plot in Java Application”

2 Examples

2-38

Generate a Python Package and Build a Python Application
Supported platforms: Windows, Linux, Mac

This example shows how to create a Python package from a MATLAB function and integrate the
generated package into a Python application.

Prerequisites
• Verify that you have a version of Python installed that is compatible with MATLAB Compiler SDK.

For details, see MATLAB Supported Interfaces to Other Languages.
• End users must have an installation of MATLAB Runtime to run the application. For testing

purposes, you can use an installation of MATLAB instead of MATLAB Runtime. For details, see
“Install and Configure MATLAB Runtime”.

Create Function in MATLAB
In MATLAB, examine the MATLAB code that you want packaged. For this example, create a function
named makesqr.m that contains the following code:

function y = makesqr(x)
y = magic(x);

At the MATLAB command prompt, enter makesqr(5).

The output is a 5-by-5 matrix.

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Create Python Application Using Library Compiler App
Compile the function into a Python package using the Library Compiler app. Alternatively, if you
want to create a Python package from the MATLAB command window using a programmatic
approach, see “Create Python Package Using compiler.build.pythonPackage” on page 2-43.

1 On the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In Application
Deployment, click Library Compiler.

Alternatively, you can open the Library Compiler app from the MATLAB command prompt.

libraryCompiler

 Generate a Python Package and Build a Python Application

2-39

https://www.mathworks.com/support/requirements/language-interfaces.html

2 In the Type section of the toolstrip, click Python Package.

In the Library Compiler app project window, specify the files of the MATLAB application that
you want to deploy.

a
In the Exported Functions section of the toolstrip, click .

b In the Add Files window, browse to the example folder, and select the function you want to
package. Click Open.

The function is added to the list of exported function files. Repeat this step to package multiple
files in the same application.

For this example, select the makesqr.m file that you wrote earlier.
3 In the Packaging Options section of the toolstrip, decide whether to include the MATLAB

Runtime installer in the generated application by selecting one of the options:

• Runtime downloaded from web — Generate an installer that downloads the MATLAB
Runtime and installs it along with the deployed MATLAB application. You can specify the file
name of the installer.

• Runtime included in package — Generate an application that includes the MATLAB
Runtime installer. You can specify the file name of the installer.

Note The first time you select this option, you are prompted to download the MATLAB
Runtime installer.

Specify Package Settings

Next, define the name of your Python package.

• Choose a name for your package. The Library Name field is automatically populated with
makesqr as the name of the package. Rename it as MagicSquarePkg. For more information on
naming requirements for the Python package, see “Import Compiled Python Packages”.

Create Sample Driver File

You can add MATLAB files to the project to generate sample Python driver files. Although Python
driver files are not necessary to create a package, you can use them to implement a Python
application, as shown in “Install and Run MATLAB Generated Python Application” on page 2-44.

2 Examples

2-40

In the Samples section, select Create New Sample, and click makesqr.m. A MATLAB file opens for
you to edit.

% Sample script to demonstrate execution of function y = makesqr(x)
x = 0; % Initialize x here
y = makesqr(x);

Change x = 0 to x = 5, save the file, and return to the Library Compiler app.

For more information and limitations, see “Sample Driver File Creation” on page 3-5.

Customize the Application and Its Appearance

In the Library Compiler app, you can customize the installer, customize your application, and add
more information about the application.

• Library information — Information about the deployed application. You can also customize the
appearance of the application by changing the application icon and splash screen. The generated
installer uses this information to populate the installed application metadata. See “Customize the
Installer” on page 3-2.

• Additional installer options — Default installation path for the generated installer and custom
logo selection. See “Change the Installation Path” on page 3-3.

• Files required for your library to run — Additional files required by the generated application
to run. These files are included in the generated application installer. See “Manage Required Files
in Compiler Project” on page 3-4.

• Files installed for your end user — Files that are installed with your application.

See “Specify Files to Install with Application” on page 3-6.

 Generate a Python Package and Build a Python Application

2-41

Package the Application

When you are finished selecting your packaging options, save your Library Compiler project and
generate the packaged application.

1 Click Package.

In the Save Project dialog box, specify the location to save the project.
2 In the Package dialog box, verify that Open output folder when process completes is

selected.

When the packaging process is complete, examine the generated output in the target folder.

2 Examples

2-42

• Three folders are generated: for_redistribution, for_redistribution_files_only,
and for_testing.

For more information about the files generated in these folders, see “Files Generated After
Packaging MATLAB Functions” on page 1-10.

• The log file PackagingLog.html contains packaging results.

Create Python Package Using compiler.build.pythonPackage
As an alternative to the Library Compiler app, you can create a Python package using a
programmatic approach. If you have already created a package using the Library Compiler, see
“Install and Run MATLAB Generated Python Application” on page 2-44.

1 Save the following code in a sample file named makesqrSample1.m:

x = 5;
y = makesqr(x);

2 Build the Python package using the compiler.build.pythonPackage function and the
makesqr.m file that you wrote earlier. Use name-value arguments to specify the package name
and add a sample file.
buildResults = compiler.build.pythonPackage('makesqr.m', ...
'PackageName','MagicSquarePkg', ...
'SampleGenerationFiles','makesqrSample1.m', ...
'Verbose','on');

You can specify additional options in the compiler.build command by using name-value
arguments. For details, see compiler.build.pythonPackage.

The compiler.build.Results object buildResults contains information on the build type,
generated files, included support packages, and build options.

3 The function generates the following files within a folder named
MagicSquarePkgpythonPackage in your current working directory:

• samples\makesqrSample1.py — Python sample application file.
• GettingStarted.html — HTML file that contains information on integrating your package.
• includedSupportPackages.txt — Text file that lists all support files included in the

package.
• mccExcludedFiles.log — Log file that contains a list of any toolbox functions that were

not included in the application. For information on non-supported functions, see MATLAB
Compiler Limitations.

• readme.txt — Text file that contains packaging and interface information.
• requiredMCRProducts.txt — Text file that contains product IDs of products required by

MATLAB Runtime to run the application.
• setup.py — Python file that installs the package.
• unresolvedSymbols.txt — Text file that contains information on unresolved symbols.

Note The generated package does not include MATLAB Runtime or an installer. To create an
installer using the buildResults object, see compiler.package.installer.

 Generate a Python Package and Build a Python Application

2-43

Install and Run MATLAB Generated Python Application
After creating your Python package, you can call it from a Python application. This example uses the
sample Python code generated during packaging. You can use this sample Python application code as
a guide to write your own application.

1 Copy and paste the generated Python file makesqrSample1.py from the samples folder into
the folder that contains the setup.py file.

The program listing for makesqrSample1.py is shown below.
#!/usr/bin/env python
"""
Sample script that uses the MagicSquarePkg module created using
MATLAB Compiler SDK.

Refer to the MATLAB Compiler SDK documentation for more information.
"""

from __future__ import print_function
import MagicSquarePkg
import matlab

my_MagicSquarePkg = MagicSquarePkg.initialize()

xIn = matlab.double([5.0], size=(1, 1))
yOut = my_MagicSquarePkg.makesqr(xIn)
print(yOut, sep='\n')

my_MagicSquarePkg.terminate()
2 At the system command prompt, navigate to the folder that contains makesqrSample1.py and

setup.py.
3 Install the application using the python command.

python setup.py install

To install to a location other than the default, consult "Installing Python Modules" in the official
Python documentation.

4 Run the application at the system command prompt.

python makesqrSample1.py

If you used sample MATLAB code in the packaging steps, this application returns the same
output as the sample code.
[[17.0,24.0,1.0,8.0,15.0],[23.0,5.0,7.0,14.0,16.0],[4.0,6.0,13.0,20.0,22.0],
[10.0,12.0,19.0,21.0,3.0],[11.0,18.0,25.0,2.0,9.0]]

Note On macOS, you must use the mwpython script instead of python. For example, mwpython
makesqrSample1.py.

The mwpython script is located in the matlabroot/bin folder, where matlabroot is the
location of your MATLAB or MATLAB Runtime installation.

See Also
mwpython | libraryCompiler | compiler.build.pythonPackage | mcc | deploytool

2 Examples

2-44

Customizing a Compiler Project

• “Customize an Application” on page 3-2
• “Manage Support Packages” on page 3-9

3

Customize an Application
You can customize an application in several ways: customize the installer, manage files in the project,
or add a custom installer path using the Application Compiler app or the Library Compiler app.

Customize the Installer
Change Application Icon

To change the default icon, click the graphic to the left of the Library name or Application name
field to preview the icon.

Click Select icon, and locate the graphic file to use as the application icon. Select the Use mask
option to fill any blank spaces around the icon with white or the Use border option to add a border
around the icon.

To return to the main window, click Save and Use.

Add Library or Application Information

You can provide further information about your application as follows:

• Library/Application Name: The name of the installed MATLAB artifacts. For example, if the name
is foo, the installed executable is foo.exe, and the Windows start menu entry is foo. The folder
created for the application is InstallRoot/foo.

The default value is the name of the first function listed in the Main File(s) field of the app.
• Version: The default value is 1.0.
• Author name: Name of the developer.
• Support email address: Email address to use for contact information.
• Company name: The full installation path for the installed MATLAB artifacts. For example, if the

company name is bar, the full installation path would be InstallRoot/bar/ApplicationName.
• Summary: Brief summary describing the application.
• Description: Detailed explanation about the application.

All information is optional and, unless otherwise stated, is only displayed on the first page of the
installer. On Windows systems, this information is also displayed in the Windows Add/Remove
Programs control panel.

3 Customizing a Compiler Project

3-2

Change the Splash Screen

The installer splash screen displays after the installer has started. It is displayed along with a status
bar while the installer initializes.

You can change the default image by clicking the Select custom splash screen. When the file
explorer opens, locate and select a new image.

You can drag and drop a custom image onto the default splash screen.

Change the Installation Path

This table lists the default path the installer uses when installing the packaged binaries onto a target
system.

Windows C:\Program Files\companyName\appName
Mac OS X /Applications/companyName/appName
Linux /usr/companyName/appName

You can change the default installation path by editing the Default installation folder field under
Additional installer options.

 Customize an Application

3-3

A text field specifying the path appended to the root folder is your installation folder. You can pick the
root folder for the application installation folder. This table lists the optional custom root folders for
each platform:

Windows C:\Users\userName\AppData
Linux /usr/local

Change the Logo

The logo displays after the installer has started. It is displayed on the right side of the installer.

You change the default image in Additional Installer Options by clicking Select custom logo.
When the file explorer opens, locate and select a new image. You can drag and drop a custom image
onto the default logo.

Edit the Installation Notes

Installation notes are displayed once the installer has successfully installed the packaged files on the
target system. You can provide useful information concerning any additional setup that is required to
use the installed binaries and instructions for how to run the application.

Manage Required Files in Compiler Project
The compiler uses a dependency analysis function to automatically determine what additional
MATLAB files are required for the application to package and run. These files are automatically
packaged into the generated binary. The compiler does not generate any wrapper code that allows
direct access to the functions defined by the required files.

If you are using one of the compiler apps, the required files discovered by the dependency analysis
function are listed in the Files required for your application to run or Files required for your
library to run field.

To add files, click the plus button in the field, and select the file from the file explorer. To remove files,
select the files, and press the Delete key.

Caution Removing files from the list of required files may cause your application to not package or
not to run properly when deployed.

Using mcc

If you are using mcc to package your MATLAB code, the compiler does not display a list of required
files before running. Instead, it packages all the required files that are discovered by the dependency
analysis function and adds them to the generated binary file.

You can add files to the list by passing one or more -a arguments to mcc. The -a arguments add the
specified files to the list of files to be added into the generated binary. For example, -a hello.m
adds the file hello.m to the list of required files and -a ./foo adds all the files in foo and its
subfolders to the list of required files.

3 Customizing a Compiler Project

3-4

Sample Driver File Creation
The following target types support sample driver file creation in MATLAB Compiler SDK:

• C++ shared library
• Java package
• .NET assembly
• Python package

The sample driver file creation feature in Library Compiler uses MATLAB code to generate sample
driver files in the target language. The sample driver files are used to implement the generated
shared libraries into an application in the target language. In the app, click Create New Sample to
automatically generate a new MATLAB script, or click Add Existing Sample to upload a MATLAB
script that you have already written. After you package your functions, a sample driver file in the
target language is generated from your MATLAB script and is saved in
for_redistribution_files_only\samples. Sample driver files are also included in the installer
in for_redistribution.

To automatically generate a new MATLAB file, click Create New Sample. This opens up a MATLAB
file for you to edit. The sample file serves as a starting point, and you can edit it as necessary based
on the behavior of your exported functions. The sample MATLAB files must follow these guidelines:

• The sample file code must use only exported functions.
• Each exported function must be in a separate sample file.
• Each call to the same exported function must be a separate sample file.
• The output of the exported function must be an n-dimensional numeric, char, logical, struct, or cell

array.
• Data must be saved as a local variable and then passed to the exported function in the sample file

code.
• Sample file code should not require user interaction.

Additional considerations specific to the target language are as follows:

• C++ mwArray API — varargin and varargout are not supported.
• .NET — Type-safe API is not supported.
• Python — Cell arrays and char arrays must be of size 1xN and struct arrays must be scalar. There

are no restrictions on numeric or logical arrays, other than that they must be rectangular, as in
MATLAB.

 Customize an Application

3-5

To upload a MATLAB file that you have already written, click Add Existing Sample. The MATLAB
code should demonstrate how to execute the exported functions. The required MATLAB code can be
only a few lines:

input1 = [1 4 7; 2 5 8; 3 6 9];
input2 = [1 4 7; 2 5 8; 3 6 9];
addoutput = addmatrix(input1,input2);

This code must also follow all the same guidelines outlined for the Create New Sample option.

You can also choose not to include a sample driver file at all during the packaging step. If you create
your own driver code in the target language, you can later copy and paste it into the appropriate
directory once the MATLAB functions are packaged.

Specify Files to Install with Application
The compiler packages files to install along with the ones it generates. By default, the installer
includes a readme file with instructions on installing the MATLAB Runtime and configuring it.

These files are listed in the Files installed for your end user section of the app.

To add files to the list, click , and select the file from the file explorer.

JAR files are added to the application class path as if you had called javaaddpath.

Caution Removing the binary targets from the list results in an installer that does not install the
intended functionality.

When installed on a target computer, the files listed in the Files installed for your end user are
saved in the application folder.

Additional Runtime Settings
Type of Packaged
Application

Description Additional Runtime Settings Options

Generic COM
Components

• Register the
component for the
current user
(Recommended for
non-admin users) —
This option enables
registering the
component for the
current user account.
It is provided for users
without admin rights.

3 Customizing a Compiler Project

3-6

Type of Packaged
Application

Description Additional Runtime Settings Options

.NET Assembly • Create Shared
Assembly — Enables
sharing MATLAB
Runtime installer
instances for
multiple .NET
assemblies.

• Enable .NET
Remoting — Enables
you to remotely access
MATLAB functionality,
as a part of a
distributed system. For
more information, see
“Create
Remotable .NET
Assembly”.

• Enable Type Safe API
— Enables the type
safe API for the
packaged .NET
assembly.

API Selection for C++ Shared Library

• Create all interfaces — Create interfaces for shared libraries using both the mwArray API and
the MATLAB Data API.

• Create interface that uses the mwArray API — Create an interface for a shared library using
the mwArray API. The interface uses C-style functions to initialize the MATLAB Runtime, load the
compiled MATLAB functions into the MATLAB Runtime, and manage data that is passed between
the C++ code and the MATLAB Runtime. The interface supports only C++03 functionality. For an
example, see “Generate a C++ mwArray API Shared Library and Build a C++ Application” on
page 2-7.

• Create interface that uses the MATLAB Data API — Create an interface for a shared library
using MATLAB Data API. It uses a generic interface that has modern C++ semantics. The
interface supports C++11 functionality. For more information, see “Generate a C++ MATLAB
Data API Shared Library and Build a C++ Application” on page 2-13.

 Customize an Application

3-7

See Also
libraryCompiler

More About
• “Create a C Shared Library with MATLAB Code” on page 2-2
• “Generate a C++ mwArray API Shared Library and Build a C++ Application” on page 2-7
• “Generate a C++ MATLAB Data API Shared Library and Build a C++ Application” on page 2-13
• “Generate .NET Assembly and Build .NET Application” on page 2-19
• “Create a Generic COM Component with MATLAB Code” on page 2-27
• “Generate Java Package and Build Java Application” on page 2-32
• “Generate a Python Package and Build a Python Application” on page 2-39

3 Customizing a Compiler Project

3-8

Manage Support Packages
Using a Compiler App
Many MATLAB toolboxes use support packages to interact with hardware or to provide additional
processing capabilities. If your MATLAB code uses a toolbox with an installed support package, the
app displays a Suggested Support Packages section.

The list displays all installed support packages that your MATLAB code requires. The list is
determined using these criteria:

• the support package is installed
• your code has a direct dependency on the support package
• your code is dependent on the base product of the support package
• your code is dependent on at least one of the files listed as a dependency in the mcc.xml file of

the support package, and the base product of the support package is MATLAB

Deselect support packages that are not required by your application.

Some support packages require third-party drivers that the compiler cannot package. In this case,
the compiler adds the information to the installation notes. You can edit installation notes in the
Additional Installer Options section of the app. To remove the installation note text, deselect the
support package with the third-party dependency.

Caution Any text you enter beneath the generated text will be lost if you deselect the support
package.

Using the Command Line
Many MATLAB toolboxes use support packages to interact with hardware or to provide additional
processing capabilities. If your MATLAB code uses a toolbox with an installed support package, use
the-a flag with mcc command when packaging your MATLAB code to specify supporting files in the

 Manage Support Packages

3-9

support package folder. For example, if your function uses the OS Generic Video Interface
support package, run the following command:

mcc -m -v test.m -a C:\MATLAB\SupportPackages\R2016b\toolbox\daq\supportpackages\daqaudio -a 'C:\MATLAB\SupportPackages\R2016b\resources\daqaudio'

Some support packages require third-party drivers that the compiler cannot package. In this case,
you are responsible for downloading and installing the required drivers.

3 Customizing a Compiler Project

3-10

Using MATLAB Production Server

• “Create Deployable Archive for MATLAB Production Server” on page 4-2
• “Create and Install a Deployable Archive with Excel Integration for MATLAB Production Server”

on page 4-6
• “Create a C# Client” on page 4-11
• “Create MATLAB Production Server Java Client Using MWHttpClient Class” on page 4-14
• “Create a C++ Client” on page 4-17
• “Create a Python Client” on page 4-22

4

Create Deployable Archive for MATLAB Production Server
Supported platform: Windows, Linux, Mac

Note To create a deployable archive, you need an installation of the MATLAB Compiler SDK product.

This example shows how to create a deployable archive using a MATLAB function. You can then
deploy the generated archive on MATLAB Production Server.

Create MATLAB Function
In MATLAB, examine the MATLAB program that you want to package.

For this example, write a function addmatrix.m as follows.

function a = addmatrix(a1, a2)

a = a1 + a2;

At the MATLAB command prompt, enter addmatrix([1 4 7; 2 5 8; 3 6 9], [1 4 7; 2 5
8; 3 6 9]).

The output is:

 ans =
 2 8 14
 4 10 16
 6 12 18

Create Deployable Archive with Production Server Compiler App
Package the function into a deployable archive using the Production Server Compiler app.
Alternatively, if you want to create a deployable archive from the MATLAB command window using a
programmatic approach, see “Create Deployable Archive Using
compiler.build.productionServerArchive”.

1 To open the Production Server Compiler app, type productionServerCompiler at the
MATLAB prompt.

Alternatively, on the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In
Application Deployment, click Production Server Compiler. In the Production Server
Compiler project window, click Deployable Archive (.ctf).

2 In the Production Server Compiler project window, specify the main file of the MATLAB
application that you want to deploy.

1
In the Exported Functions section, click .

2 In the Add Files window, browse to the example folder, and select the function you want to
package.

Click Open.

Doing so adds the function addmatrix.m to the list of main files.

4 Using MATLAB Production Server

4-2

Customize Application and Its Appearance
Customize your deployable archive and add more information about the application.

• Archive information — Editable information about the deployed archive.
• Additional files required for your archive to run — Additional files required to run the

generated archive. These files are included in the generated archive installer. See “Manage
Required Files in Compiler Project” on page 3-4.

• Files packaged for redistribution — Files that are installed with your archive. These files
include:

• Generated deployable archive
• Generated readme.txt

See “Specify Files to Install with Application” on page 3-6.
• Include MATLAB function signature file — Add or create a function signature file to help

clients use your MATLAB functions. See “MATLAB Function Signatures in JSON”.

 Create Deployable Archive for MATLAB Production Server

4-3

Package Application
1 To generate the packaged application, click Package.

In the Save Project dialog box, specify the location to save the project.

2 In the Package dialog box, verify that Open output folder when process completes is
selected.

When the deployment process is complete, examine the generated output.

• for_redistribution — Folder containing the archive archiveName.ctf
• for_testing — Folder containing the raw generated files to create the installer

4 Using MATLAB Production Server

4-4

• PackagingLog.html — Log file generated by MATLAB Compiler SDK

Create Deployable Archive Using
compiler.build.productionServerArchive
As an alternative to the Production Server Compiler app, you can create a deployable archive
using a programmatic approach.

• Build the deployable archive using the compiler.build.productionServerArchive
function.
buildResults = compiler.build.productionServerArchive('addmatrix.m', ...
'Verbose','on');

You can specify additional options in the compiler.build command by using name-value
arguments. For details, see compiler.build.productionServerArchive.

The compiler.build.Results object buildResults contains information on the build type,
generated files, included support packages, and build options.

The function generates the following files within a folder named
addmatrixproductionServerArchive in your current working directory:

• addmatrix.ctf — Deployable archive file.
• includedSupportPackages.txt — Text file that lists all support files included in the

assembly.
• mccExcludedFiles.log — Log file that contains a list of any toolbox functions that were

not included in the application. For information on non-supported functions, see MATLAB
Compiler Limitations.

• readme.txt — Text file that contains packaging and deployment information.
• requiredMCRProducts.txt — Text file that contains product IDs of products required by

MATLAB Runtime to run the application.
• unresolvedSymbols.txt — Text file that contains information on unresolved symbols.

Compatibility Considerations
In most cases, you can generate the deployable archive on one platform and deploy to a server
running on any other supported platform. Unless you add operating system-specific dependencies or
content, such as MEX files or Simulink simulations to your applications, the generated archives are
platform-independent.

See Also
compiler.build.productionServerArchive | mcc | deploytool |
productionServerCompiler

More About
• Production Server Compiler
• “MATLAB Function Signatures in JSON”

 Create Deployable Archive for MATLAB Production Server

4-5

Create and Install a Deployable Archive with Excel Integration
for MATLAB Production Server

Supported Platform: Microsoft Windows only.

This example shows how to create a deployable archive with Excel integration using a MATLAB
function. You can then deploy the generated archive on MATLAB Production Server.

Prerequisites
MATLAB Compiler SDK requires .NET framework 4.0 or later to build Excel add-ins for MATLAB
Production Server.

To generate the Excel add-in file (.xla), enable Trust access to the VBA project object model in
Excel. If you do not do this, you can manually create the add-in by importing the .bas file into Excel.

Create Function in MATLAB
In MATLAB, examine the MATLAB program that you want to package.

For this example, write a function mymagic.m as follows.

function y = mymagic(x)

y = magic(x);

At the MATLAB command prompt, enter mymagic(3).

The output is:

 ans =
 8 1 6
 3 5 7
 4 9 2

Create Deployable Archive with Excel Integration Using Production
Server Compiler App
Package the function into a deployable archive with Excel integration using the Production Server
Compiler app. Alternatively, if you want to create a deployable archive from the MATLAB command
window using a programmatic approach, see “Create Deployable Archive with Excel Integration
Using compiler.build.excelClientForProductionServer”.

1 To open the Production Server Compiler app, type productionServerCompiler at the
MATLAB prompt.

Alternatively, on the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In
Application Deployment, click Production Server Compiler. In the Production Server
Compiler project window, click Deployable Archive with Excel integration.

2 In the Production Server Compiler project window, specify the main file of the MATLAB
application that you want to deploy.

4 Using MATLAB Production Server

4-6

1
In the Exported Functions section, click .

2 In the Add Files window, browse to the example folder, and select the function you want to
package.

Click Open.

Doing so adds the function mymagic.m to the list of main files.

Customize the Application and Its Appearance
Customize your deployable archive with Excel integration and add more information about the
application.

• Archive information — Editable information about the deployed archive with Excel integration.
• Client configuration — Configure the MATLAB Production Server client. Select the Default

Server URL, decide wait time-out, and maximum size of response for the client, and provide an
optional self-signed certificate for https.

• Additional files required for your archive to run — Additional files required by the generated
archive to run. These files are included in the generated archive installer. See “Manage Required
Files in Compiler Project” on page 3-4.

• Files installed with your archive — Files that are installed with your archive on the client and
server. The files installed on the server include:

• Generated deployable archive (CTF file)
• Generated readme.txt

The files installed on the client include:

• mymagic.bas
• mymagic.dll
• mymagic.xla
• readme.txt
• ServerConfig.dll

See “Specify Files to Install with Application” on page 3-6.
• Options — The option Register the resulting component for you only on the development

machine exclusively registers the packaged component for one user on the development
machine.

 Create and Install a Deployable Archive with Excel Integration for MATLAB Production Server

4-7

Package the Application
1 To generate the packaged application, click Package.

In the Save Project dialog box, specify the location to save the project.

4 Using MATLAB Production Server

4-8

2 In the Package dialog box, verify that Open output folder when process completes is
selected.

When the deployment process is complete, examine the generated output.

• for_redistribution — Folder containing the installer to distribute the archive on the
MATLAB Production Server client and server

• for_redistribution_files_only — Folder containing the files required for
redistributing the application on the MATLAB Production Server client and server

• for_testing — Folder containing the raw generated files to create the installer
• PackagingLog.html — Log file generated by MATLAB Compiler SDK

Create Deployable Archive with Excel Integration Using
compiler.build.excelClientForProductionServer
As an alternative to the Production Server Compiler app, you can create a deployable archive with
Excel integration using a programmatic approach.

1 Create a production server archive using mymagic.m and save the build results to a
compiler.build.Results object.

buildResults = compiler.build.productionServerArchive('mymagic.m');
2 Build the deployable archive with Excel integration using the

compiler.build.excelClientForProductionServer function.
mpsxlResults = compiler.build.excelClientForProductionServer(buildResults, ...
'Verbose','on');

You can specify additional options in the compiler.build command by using name-value
arguments. For details, see compiler.build.excelClientForProductionServer.

The compiler.build.Results object buildResults contains information on the build type,
generated files, included support packages, and build options.

The function generates the following files within a folder named
mymagicexcelClientForProductionServer in your current working directory:

• includedSupportPackages.txt — Text file that lists all support files included in the
assembly.

 Create and Install a Deployable Archive with Excel Integration for MATLAB Production Server

4-9

• mymagic.bas — VBA module file that can be imported into a VBA project.
• mymagic.dll — Dynamic library required by the Excel add-in.
• mymagic.reg — Text file that contains information on unresolved symbols.
• mymagic.xla — Excel add-in that can be installed directly in Excel.
• mymagicClass.cs — Text file that contains information on unresolved symbols.
• mccExcludedFiles.log — Log file that contains a list of any toolbox functions that were

not included in the application. For information on non-supported functions, see MATLAB
Compiler Limitations.

• readme.txt — Text file that contains packaging and deployment information.
• requiredMCRProducts.txt — Text file that contains product IDs of products required by

MATLAB Runtime to run the application.

Note The generated Excel add-in does not include MATLAB Runtime or an installer. To create an
installer using the buildResults object, see compiler.package.installer.

Install the Deployable Archive with Excel Integration
You must deploy the archive to a MATLAB Production Server instance before you can use the add-in
in Excel.

To install the deployable archive on a server instance:

1 Locate the archive in the for_redistribution_files_only\server\ folder if you used the
Production Server Compiler, or the addmatrixproductionServerArchive folder if you used
the compiler.build.productionServerArchive function.

For this example, the file name is mymagic.ctf.
2 Copy the archive file to the auto_deploy folder of the server instance. The server instance

automatically deploys it and makes it available to interested clients.

For more information, see “MATLAB Production Server” documentation.

See Also
productionServerCompiler

4 Using MATLAB Production Server

4-10

Create a C# Client
This example shows how to write a C# application to call a MATLAB function deployed to MATLAB
Production Server. The C# application uses the MATLAB Production Server .NET client library.

A .NET application programmer typically performs this task. The tutorial assumes that you have
Microsoft Visual Studio and .NET installed on your computer.

Create Microsoft Visual Studio Project

1 Open Microsoft Visual Studio.
2 Click File > New > Project.
3 In the New Project dialog box, select the template you want to use. For example, if you want to

create a C# console application in Visual Studio 2017, select Visual C# > Windows Desktop in
the left navigation pane, then select the Console App (.Net Framework).

4 Type the name of the project in the Name field (for example, Magic).
5 Click OK. Your Magic source shell is created, typically named Program.cs, by default.

Create Reference to Client Runtime Library

Create a reference in your Magic project to the MATLAB Production Server client runtime library. In
Microsoft Visual Studio, perform the following steps:

1 In the Solution Explorer pane within Microsoft Visual Studio (usually on the right side), right-
click your Magic project, select Add > Browse.

2 Browse to the MATLAB Production Server .NET client runtime library location.

The library is located in matlabroot\toolbox\compiler_sdk\mps_client\dotnet. Select
the MathWorks.MATLAB.ProductionServer.Client.dll file.

The client library is also available for download at https://www.mathworks.com/products/
matlab-production-server/client-libraries.html.

3 Click OK. Your Microsoft Visual Studio project now references the
MathWorks.MATLAB.ProductionServer.Client.dll.

Deploy MATLAB Function to Server

Write a MATLAB function mymagic that uses the magic function to create a magic square, package
mymagic into a deployable archive called mymagic_deployed, then deploy it to a server. The
function mymagic takes a single int input and returns a magic square as a 2-D double array. The
example assumes that the server instance is running at http://localhost:9910.

function m = mymagic(in)
 m = magic(in);

Design .NET Interface in C#

Invoke the deployed MATLAB function mymagic from a .NET client through a .NET interface. Design
a C# interface Magic to match the MATLAB function mymagic.

• The .NET interface has the same number of inputs and outputs as the MATLAB function.
• Since you are deploying one MATLAB function on the server, you define one corresponding .NET

method in your C# code.

 Create a C# Client

4-11

https://www.mathworks.com/products/matlab-production-server/client-libraries.html
https://www.mathworks.com/products/matlab-production-server/client-libraries.html

• Both the MATLAB function and the .NET interface process the same data types—input type int
and output type 2-D double.

• In your C# client program, use the interface Magic to specify the type of the proxy object
reference in the CreateProxy method. The CreateProxy method requires the URL to the
deployable archive that contains the mymagic function (http://localhost:9910/
mymagic_deployed) as an input argument.

 public interface Magic
 {
 double[,] mymagic(int in1);
 }

Write, Build, and Run .NET Application

1 Open the Microsoft Visual Studio project Magic that you created earlier.
2 In the Program.cs tab, paste in the code below.

using System;
using System.Net;
using MathWorks.MATLAB.ProductionServer.Client;

namespace Magic
{
 public class MagicClass
 {

 public interface Magic
 {
 double[,] mymagic(int in1);
 }

 public static void Main(string[] args)
 {
 MWClient client = new MWHttpClient();
 try
 {
 Magic me = client.CreateProxy<Magic>
 (new Uri("http://localhost:9910/mymagic_deployed"));
 double[,] result1 = me.mymagic(4);
 print(result1);
 }
 catch (MATLABException ex)
 {
 Console.WriteLine("{0} MATLAB exception caught.", ex);
 Console.WriteLine(ex.StackTrace);
 }
 catch (WebException ex)
 {
 Console.WriteLine("{0} Web exception caught.", ex);
 Console.WriteLine(ex.StackTrace);
 }
 finally
 {
 client.Dispose();
 }
 Console.ReadLine();
 }

 public static void print(double[,] x)
 {
 int rank = x.Rank;
 int[] dims = new int[rank];

 for (int i = 0; i < rank; i++)
 {
 dims[i] = x.GetLength(i);
 }

4 Using MATLAB Production Server

4-12

 for (int j = 0; j < dims[0]; j++)
 {
 for (int k = 0; k < dims[1]; k++)
 {
 Console.Write(x[j, k]);
 if (k < (dims[1] - 1))
 {
 Console.Write(",");
 }
 }
 Console.WriteLine();
 }
 }
 }
}

The URL value ("http://localhost:9910/mymagic_deployed") used to create the proxy
contains three parts.

• the server address (localhost).
• the port number (9910).
• the archive name (mymagic_deployed).

3 Build the application. Click Build > Build Solution.
4 Run the application. Click Debug > Start Without Debugging. The program returns the

following console output.

16,2,3,13
5,11,10,8
9,7,6,12
4,14,15,1

See Also

More About
• “Create a .NET MATLAB Production Server Client” (MATLAB Production Server)
• “Configure the Client-Server Connection” (MATLAB Production Server)
• “Synchronous RESTful Requests Using Protocol Buffers in .NET Client” (MATLAB Production

Server)

 Create a C# Client

4-13

Create MATLAB Production Server Java Client Using
MWHttpClient Class

This example shows how to write a MATLAB Production Server client using the MWHttpClient class
from the Java client API. For information on obtaining the Java client library, see “Obtain
mps_client.jar Client Library” (MATLAB Production Server). In your Java code, you will:

• Define a Java interface that represents the deployed MATLAB function.
• Instantiate a proxy object to communicate with the server.
• Call the deployed function in your Java code.

To create a Java MATLAB Production Server client application:

1 Create a new file, for example, MPSClientExample.java.
2 Using a text editor, open MPSClientExample.java.
3 Add the following import statements to the file:

import java.net.URL;
import java.io.IOException;
import com.mathworks.mps.client.MWClient;
import com.mathworks.mps.client.MWHttpClient;
import com.mathworks.mps.client.MATLABException;

4 Add a Java interface that represents the deployed MATLAB function.

For example, consider the following addmatrix function deployed to the server:

function a = addmatrix(a1, a2)

a = a1 + a2;

The interface for the addmatrix function follows.

interface MATLABAddMatrix {
 double[][] addmatrix(double[][] a1, double[][] a2)
 throws MATLABException, IOException;
 }

When creating the interface, note the following:

• You can give the interface any valid Java name.
• You must give the method defined by this interface the same name as the deployed MATLAB

function.
• The Java method must support the same inputs and outputs supported by the MATLAB

function, in both type and number. For more information about data type conversions and how
to handle more complex MATLAB function signatures, see “Java Client Programming”
(MATLAB Production Server).

• The Java method must handle MATLAB exceptions and I/O exceptions.
5 Add the following class definition:

public class MPSClientExample
{
}

This class now has a single main method that calls the generated class.

4 Using MATLAB Production Server

4-14

6 Add the main() method to the application.

public static void main(String[] args)
{
}

7 Add the following code to the top of the main() method to initialize the variables used by the
application:

double[][] a1={{1,2,3},{3,2,1}};
double[][] a2={{4,5,6},{6,5,4}};

8 Instantiate a client object using the MWHttpClient constructor.

MWClient client = new MWHttpClient();

This class establishes an HTTP connection between the application and the server instance.
9 Call the createProxy method of the client object to create a dynamic proxy.

You must specify the URL of the deployable archive and the name of your interface class as
arguments:

MATLABAddMatrix m = client.createProxy(new URL("http://localhost:9910/addmatrix"),
 MATLABAddMatrix.class);

The URL value ("http://localhost:9910/addmatrix") used to create the proxy contains
three parts:

• the server address (localhost).
• the port number (9910).
• the archive name (addmatrix)

For more information about the createProxy method, see the Javadoc included in the
matlabroot/toolbox/compiler_sdk/mps_client folder.

10 Call the deployed MATLAB function in your Java application by calling the public method of the
interface.

 double[][] result = m.addmatrix(a1,a2);
11 Call the close() method of the client object to free system resources.

client.close();
12 Save the Java file.

The completed Java file should resemble the following:
import java.net.URL;
import java.io.IOException;
import com.mathworks.mps.client.MWClient;
import com.mathworks.mps.client.MWHttpClient;
import com.mathworks.mps.client.MATLABException;

interface MATLABAddMatrix
 {
 double[][] addmatrix(double[][] a1, double[][] a2)
 throws MATLABException, IOException;
 }

public class MPSClientExample {

 public static void main(String[] args){

 double[][] a1={{1,2,3},{3,2,1}};
 double[][] a2={{4,5,6},{6,5,4}};

 MWClient client = new MWHttpClient();

 Create MATLAB Production Server Java Client Using MWHttpClient Class

4-15

 try{
 MATLABAddMatrix m = client.createProxy(new URL("http://localhost:9910/addmatrix"),
 MATLABAddMatrix.class);
 double[][] result = m.addmatrix(a1,a2);

 // Print the resulting matrix
 printResult(result);

 }catch(MATLABException ex){

 // This exception represents errors in MATLAB
 System.out.println(ex);
 }catch(IOException ex){

 // This exception represents network issues.
 System.out.println(ex);
 }finally{

 client.close();
 }
 }

 private static void printResult(double[][] result){
 for(double[] row : result){
 for(double element : row){
 System.out.print(element + " ");
 }
 System.out.println();
 }
 }
}

13 Compile the Java application, using the javac command or use the build capability of your Java
IDE.

For example, enter the following at the Windows command prompt:
javac -classpath "matlabroot\toolbox\compiler_sdk\mps_client\java\mps_client.jar" MPSClientExample.java

14 Run the application using the java command or your IDE.

For example, enter the following at the Windows command prompt:
java -classpath .;"matlabroot\toolbox\compiler_sdk\mps_client\java\mps_client.jar" MPSClientExample

To run the application on Linux and macOS systems, use a colon (:) to separate multiple paths.

The application returns the following at the console:

5.0 7.0 9.0
9.0 7.0 5.0

See Also

More About
• “Bond Pricing Tool for Java Client” (MATLAB Production Server)
• “MATLAB Production Server Java Client Basics” (MATLAB Production Server)
• “Synchronous RESTful Requests Using Protocol Buffers in the Java Client” (MATLAB Production

Server)
• “Asynchronous RESTful Requests Using Protocol Buffers in the Java Client” (MATLAB

Production Server)

4 Using MATLAB Production Server

4-16

Create a C++ Client
This example shows how to write a MATLAB Production Server client using the C client API. The
client application calls the addmatrix function you compiled in “Package Deployable Archives with
Production Server Compiler App” and deployed in “Deploy Archive to MATLAB Production Server”
(MATLAB Production Server).

Create a C++ MATLAB Production Server client application:

1 Create a file called addmatrix_client.cpp.
2 Using a text editor, open addmatrix_client.cpp.
3 Add the following include statements to the file:

#include <iostream>
#include <mps/client.h>

Note The header files for the MATLAB Production Server C client API are located in the
matlabroot/toolbox/compiler_sdk/mps_client/c/include/mps folder. folder.

4 Add the main() method to the application.

int main (void)
{
}

5 Initialize the client runtime.

mpsClientRuntime* mpsruntime = mpsInitializeEx(MPS_CLIENT_1_1);
6 Create the client configuration.

mpsClientConfig* config;
mpsStatus status = mpsruntime->createConfig(&config);

7 Create the client context.

mpsClientContext* context;
status = mpsruntime->createContext(&context, config);

8 Create the MATLAB data to input to the function.

double a1[2][3] = {{1,2,3},{3,2,1}};
double a2[2][3] = {{4,5,6},{6,5,4}};

int numIn=2;
mpsArray** inVal = new mpsArray* [numIn];

inVal[0] = mpsCreateDoubleMatrix(2,3,mpsREAL);
inVal[1] = mpsCreateDoubleMatrix(2,3,mpsREAL);

double* data1 = (double *)(mpsGetData(inVal[0]));
double* data2 = (double *)(mpsGetData(inVal[1]));

for(int i=0; i<2; i++)
{
 for(int j=0; j<3; j++)
 {
 mpsIndex subs[] = { i, j };
 mpsIndex id = mpsCalcSingleSubscript(inVal[0], 2, subs);
 data1[id] = a1[i][j];
 data2[id] = a2[i][j];

 Create a C++ Client

4-17

 }
}

9 Create the MATLAB data to hold the output.

int numOut = 1;
mpsArray **outVal = new mpsArray* [numOut];

10 Call the deployed MATLAB function.

Specify the following as arguments:

• client context
• URL of the function
• Number of expected outputs
• Pointer to the mpsArray holding the outputs
• Number of inputs
• Pointer to the mpsArray holding the inputs

mpsStatus status = mpsruntime->feval(context,
 "http://localhost:9910/addmatrix/addmatrix",
 numOut, outVal, numIn, (const mpsArray**)inVal);

For more information about the feval function, see the reference material included in the
matlabroot/toolbox/compiler_sdk/mps_client folder.

11 Verify that the function call was successful using an if statement.

if (status==MPS_OK)
{
}

12 Inside the if statement, add code to process the output.

double* out = mpsGetPr(outVal[0]);

for (int i=0; i<2; i++)
{
 for (int j=0; j<3; j++)
 {
 mpsIndex subs[] = {i, j};
 mpsIndex id = mpsCalcSingleSubscript(outVal[0], 2, subs);
 std::cout << out[id] << "\t";
 }
 std::cout << std::endl;
}

13 Add an else clause to the if statement to process any errors.

else
{
 mpsErrorInfo error;
 mpsruntime->getLastErrorInfo(context, &error);
 std::cout << "Error: " << error.message << std::endl;
 switch(error.type)
 {
 case MPS_HTTP_ERROR_INFO:
 std::cout << "HTTP: " << error.details.http.responseCode << ": "
 << error.details.http.responseMessage << std::endl;
 case MPS_MATLAB_ERROR_INFO:
 std::cout << "MATLAB: " << error.details.matlab.identifier

4 Using MATLAB Production Server

4-18

 << std::endl;
 std::cout << error.details.matlab.message << std::endl;
 case MPS_GENERIC_ERROR_INFO:
 std::cout << "Generic: " << error.details.general.genericErrorMsg
 << std::endl;
 }

 mpsruntime->destroyLastErrorInfo(&error);
}

14 Free the memory used by the inputs.

for (int i=0; i<numIn; i++)
 mpsDestroyArray(inVal[i]);
delete[] inVal;

15 Free the memory used by the outputs.

for (int i=0; i<numOut; i++)
 mpsDestroyArray(outVal[i]);
delete[] outVal;

16 Free the memory used by the client runtime.

mpsruntime->destroyConfig(config);
mpsruntime->destroyContext(context);
mpsTerminate();

17 Save the file.

The completed program should resemble the following:
#include <iostream>
#include <mps/client.h>

int main (void)
{
 mpsClientRuntime* mpsruntime = mpsInitializeEx(MPS_CLIENT_1_1);

 mpsClientConfig* config;
 mpsStatus status = mpsruntime->createConfig(&config);

 mpsClientContext* context;
 status = mpsruntime->createContext(&context, config);

 double a1[2][3] = {{1,2,3},{3,2,1}};
 double a2[2][3] = {{4,5,6},{6,5,4}};

 int numIn=2;
 mpsArray** inVal = new mpsArray* [numIn];
 inVal[0] = mpsCreateDoubleMatrix(2,3,mpsREAL);
 inVal[1] = mpsCreateDoubleMatrix(2,3,mpsREAL);
 double* data1 = (double *)(mpsGetData(inVal[0]));
 double* data2 = (double *)(mpsGetData(inVal[1]));
 for(int i=0; i<2; i++)
 {
 for(int j=0; j<3; j++)
 {
 mpsIndex subs[] = { i, j };
 mpsIndex id = mpsCalcSingleSubscript(inVal[0], 2, subs);
 data1[id] = a1[i][j];
 data2[id] = a2[i][j];
 }
 }

 int numOut = 1;
 mpsArray **outVal = new mpsArray* [numOut];

 status = mpsruntime->feval(context,
 "http://localhost:9910/addmatrix/addmatrix",
 numOut, outVal, numIn, (const mpsArray **)inVal);

 if (status==MPS_OK)
 {
 double* out = mpsGetPr(outVal[0]);

 Create a C++ Client

4-19

 for (int i=0; i<2; i++)
 {
 for (int j=0; j<3; j++)
 {
 mpsIndex subs[] = {i, j};
 mpsIndex id = mpsCalcSingleSubscript(outVal[0], 2, subs);
 std::cout << out[id] << "\t";
 }
 std::cout << std::endl;
 }
 }
 else
 {
 mpsErrorInfo error;
 mpsruntime->getLastErrorInfo(context, &error);
 std::cout << "Error: " << error.message << std::endl;

 switch(error.type)
 {
 case MPS_HTTP_ERROR_INFO:
 std::cout << "HTTP: "
 << error.details.http.responseCode
 << ": " << error.details.http.responseMessage
 << std::endl;
 case MPS_MATLAB_ERROR_INFO:
 std::cout << "MATLAB: " << error.details.matlab.identifier
 << std::endl;
 std::cout << error.details.matlab.message << std::endl;
 case MPS_GENERIC_ERROR_INFO:
 std::cout << "Generic: "
 << error.details.general.genericErrorMsg
 << std::endl;
 }
 mpsruntime->destroyLastErrorInfo(&error);
 }

 for (int i=0; i<numIn; i++)
 mpsDestroyArray(inVal[i]);
 delete[] inVal;

 for (int i=0; i<numOut; i++)
 mpsDestroyArray(outVal[i]);
 delete[] outVal;

 mpsruntime->destroyConfig(config);
 mpsruntime->destroyContext(context);
 mpsTerminate();
}

18 Compile the application.

To compile your client code, the compiler needs access to client.h. This header file is stored in
matlabroot/toolbox/compiler_sdk/mps_client/c/include/mps/.

To link your application, the linker needs access to the following files stored in matlabroot/
toolbox/compiler_sdk/mps_client/c/:

Files Required for Linking

Windows UNIX/Linux Mac OS X
$arch\lib
\mpsclient.lib

$arch/lib/
libprotobuf.so

$arch/lib/
libprotobuf.dylib

 $arch/lib/libcurl.so $arch/lib/
libcurl.dylib

 $arch/lib/
libmwmpsclient.so

$arch/lib/
libmwmpsclient.dylib

 $arch/lib/
libmwcpp11compat.so

19 Run the application.

4 Using MATLAB Production Server

4-20

To run your application, add the following files stored in matlabroot/toolbox/
compiler_sdk/mps_client/c/ to the application’s path:

Files Required for Running

Windows UNIX/Linux Mac OS X
$arch\lib
\mpsclient.dll

$arch/lib/
libprotobuf.so

$arch/lib/
libprotobuf.dylib

$arch\lib
\libprotobuf.dll

$arch/lib/libcurl.so $arch/lib/
libcurl.dylib

$arch\lib\libcurl.dll $arch/lib/
libmwmpsclient.so

$arch/lib/
libmwmpsclient.dylib

 $arch/lib/
libmwcpp11compat.so

The client invokes addmatrix function on the server instance and returns the following matrix
at the console:

5.0 7.0 9.0
9.0 7.0 5.0

 Create a C++ Client

4-21

Create a Python Client
This example shows how to write a MATLAB Production Server client using the Python client API. The
client application calls the addmatrix MATLAB function deployed to a server instance. For
information on writing and compiling the function for deployment, see “Create Deployable Archive for
MATLAB Production Server” (MATLAB Production Server). For deploying the function to the server,
see “Deploy Archive to MATLAB Production Server” (MATLAB Production Server).

Before you write the client application, you must have the MATLAB Production Server Python client
libraries installed on your system. For details, see “Install the MATLAB Production Server Python
Client” (MATLAB Production Server).

1 Start the Python command line interpreter.
2 Enter the following import statements at the Python command prompt.

import matlab
from production_server import client

3 Open the connection to the MATLAB Production Server instance and initialize the client runtime.

client_obj = client.MWHttpClient("http://localhost:9910")
4 Create the MATLAB data to input to the function.

a1 = matlab.double([[1,2,3],[3,2,1]])
a2 = matlab.double([[4,5,6],[6,5,4]])

5 Call the deployed MATLAB function.

You must know the following:

• Name of the deployed archive
• Name of the function

The syntax for invoking a function is client.archiveName.functionName(arg1,
arg2, .., [nargout=numOutArgs]).

client_obj.addmatrix.addmatrix(a1,a2)

The output is:

matlab.double([[5.0,7.0,9.0],[9.0,7.0,5.0]])
6 Close the client connection.

client_obj.close()

See Also
matlab.production_server.client.MWHttpClient

Related Examples
• “Create Client Connection” (MATLAB Production Server)

4 Using MATLAB Production Server

4-22

	Overview of MATLAB Compiler SDK
	MATLAB Compiler SDK Product Description
	Appropriate Tasks for MATLAB Compiler Products
	Deployment Product Terms
	Files Generated After Packaging MATLAB Functions
	for_redistribution Folder
	for_redistribution_files_only Folder
	for_testing Folder

	Install and Configure MATLAB Runtime
	Download MATLAB Runtime Installer
	Install MATLAB Runtime Interactively
	Install MATLAB Runtime Noninteractively
	Install MATLAB Runtime without Administrator Rights
	Install Multiple MATLAB Runtime Versions on Single Machine
	Install MATLAB and MATLAB Runtime on Same Machine
	Uninstall MATLAB Runtime

	Examples
	Create a C Shared Library with MATLAB Code
	Create Functions in MATLAB
	Create a C Shared Library Using the Library Compiler App
	Customize the Application and Its Appearance
	Package the Application
	Create C Shared Library Using compiler.build.cSharedLibrary
	Implement C Shared Library in C Application

	Generate a C++ mwArray API Shared Library and Build a C++ Application
	Create Functions in MATLAB
	Create a C++ Shared Library Using the Library Compiler App
	Create C++ Shared Library Using compiler.build.cppSharedLibrary
	Implement C++ mwArray API Shared Library with Driver Application

	Generate a C++ MATLAB Data API Shared Library and Build a C++ Application
	Create Functions in MATLAB
	Create a C++ Shared Library Using Library Compiler App
	Create C++ Shared Library Using compiler.build.cppSharedLibrary
	Implement C++ MATLAB Data API Shared Library with Sample Application

	Generate .NET Assembly and Build .NET Application
	Prerequisites
	Files
	Create Function in MATLAB
	Create .NET Assembly Using Library Compiler App
	Create .NET Assembly Using compiler.build.dotNETAssembly
	Integrate .NET Assembly Into .NET Application

	Create a Generic COM Component with MATLAB Code
	Prerequisites
	Create Function in MATLAB
	Create Generic COM Component Using Library Compiler App
	Customize the Application and Its Appearance
	Package the Application
	Create COM Component Using compiler.build.COMComponent
	Integrate into COM Application

	Generate Java Package and Build Java Application
	Prerequisites
	Create Function in MATLAB
	Create Java Package Using Library Compiler App
	Create Java Package Using compiler.build.javaPackage
	Compile and Run MATLAB Generated Java Application

	Generate a Python Package and Build a Python Application
	Prerequisites
	Create Function in MATLAB
	Create Python Application Using Library Compiler App
	Create Python Package Using compiler.build.pythonPackage
	Install and Run MATLAB Generated Python Application

	Customizing a Compiler Project
	Customize an Application
	Customize the Installer
	Manage Required Files in Compiler Project
	Sample Driver File Creation
	Specify Files to Install with Application
	Additional Runtime Settings
	API Selection for C++ Shared Library

	Manage Support Packages
	Using a Compiler App
	Using the Command Line

	Using MATLAB Production Server
	Create Deployable Archive for MATLAB Production Server
	Create MATLAB Function
	Create Deployable Archive with Production Server Compiler App
	Customize Application and Its Appearance
	Package Application
	Create Deployable Archive Using compiler.build.productionServerArchive
	Compatibility Considerations

	Create and Install a Deployable Archive with Excel Integration for MATLAB Production Server
	Prerequisites
	Create Function in MATLAB
	Create Deployable Archive with Excel Integration Using Production Server Compiler App
	Customize the Application and Its Appearance
	Package the Application
	Create Deployable Archive with Excel Integration Using compiler.build.excelClientForProductionServer
	Install the Deployable Archive with Excel Integration

	Create a C# Client
	Create MATLAB Production Server Java Client Using MWHttpClient Class
	Create a C++ Client
	Create a Python Client

